

HANDOUTS/ NOTES/ STUDY MATERIAL

Jagannath Institute of Management Sciences

Lajpat Nagar

OPERATING SYSTEM

UNIT 1

Introduction/Definition

An operating system act as an intermediary between the user of a computer and computer hardware.

The purpose of an operating system is to provide an environment in which a user can execute programs in a

convenient and efficient manner.

An operating system is a software that manages the computer hardware. The hardware must provide appropriate

mechanisms to ensure the correct operation of the computer system and to prevent user programs from interfering

with the proper operation of the system.

Definition of Operating System:

An Operating system is a program that controls the execution of application programs and acts as an interface

between the user of a computer and the computer hardware.

A more common definition is that the operating system is the one program running at all times on the computer

(usually called the kernel), with all else being applications programs.

An Operating system is concerned with the allocation of resources and services, such as memory, processors,

devices and information. The Operating System correspondingly includes programs to manage these resources,

such as a traffic controller, a scheduler, memory management module, I/O programs, and a file system. A computer

system can be divided roughly into four components – the hardware, the operating

The operating system controls and co-ordinates the use of hardware among the various

application programs for the various users.

Operating system from the user view-

The user’s view of the computer varies according to the interface being used. While

designing a PC for one user, the goal is to maximize the work that the user is

performing. Here OS is designed mostly for ease of use.

In another case the user sits at a terminal connected to a main frame or

minicomputer. Other users can access the same computer through other terminals. OS

here is designed to maximize resource utilization to assure that all available CPU time,

memory and I/O are used efficiently.

In other cases, users sit at workstations connected to networks of other workstations

and servers. These users have dedicated resources but they also share resources such as

networking and servers. Here OS is designed to compromise between individual

usability and resource utilization.

Operating system from the system view-

From the computer’s point of view, OS is the program which is widely involved with

hardware. Hence OS can be viewed as resource allocator where in resources are –

CPU time, memory space, file storage space, I/O devices etc. OS must decide how to

allocate these resources to specific programs and users so that it can operate the

computer system efficiently.

OS is also a control program. A control program manages the execution of user

programs to prevent errors and improper use of computer. It is concerned with the

operation and control of I/O devices.

Defining operating systems-

OS exists because they offer a reasonable way to solve the problem of creating

a usable computing system. Goal of computer systems is to execute user program

and to make solving user problems easier. Hence hardware is constructed. Since

hardware alone is not easy to use, application programs are developed.

Operating System Structure-

An OS provides an environment within which programs are

executed.

One of the most important aspects of OS is its ability to multi program. Multi

programming increases CPU utilization by organizing jobs (code and data) so that the

CPU always has one to execute.

OS keeps several jobs in memory. This set of jobs can be a subset of jobs kept in the

job pool which contains all jobs that enter the system. OS picks and begins to execute

one of the jobs in

memory. The job may have to wait for some task, such as I/O operation to complete. In

a non multi programmed system, OS simply switches to and executes another job.

When that job needs to wait, CPU is switched to another job and so on. As long as at

least on job needs to execute, CPU is never idle.

Multi programmed systems provide an environment in which the various system

resources are utilized effectively but they do not provide for user interaction with the

computer system. Time sharing or multi tasking is a logical extension of multi

programming. In time sharing systems, CPU executes multiple jobs by switching

among them but the switches occur so frequently that the users can interact with each

program while it is running.

Time sharing requires an interactive computer system which provides direct

communication between the user and the system. A time shared operating system

allows many users to share the computer simultaneously. It uses CPU scheduling and

multi programming to provide each user with a small portion of a time shared

computer.

A program loaded into memory and executing is called

a process.

Time sharing and multi programming require several jobs to be kept simultaneously in

memory. Since main memory is too small to accommodate all jobs, the jobs are kept

initially on the disk in the job pool.

This pool consists of all processes residing on disk awaiting allocation of main

memory. If several jobs are ready to be brought into memory and there is not enough

space, then the system must choose among them. Making this decision is job

scheduling.

Having several programs in memory at the same time requires some form of memory

management. If several jobs are ready to run at the same time, the system must choose among

them. Making this decision is CPU scheduling.

An Operating system is a program that controls the execution of application programs and

acts as an interface between the user of a computer and the computer hardware. A more common

definition is that the operating system is the one program running at all times on the computer

(usually called the kernel), with all else being applications programs.

An Operating system is concerned with the allocation of resources and services, such as memory,

processors, devices and information. The Operating System correspondingly includes programs to

manage these resources, such as a traffic controller, a scheduler, memory management module, I/O

programs, and a file system. Operating systems are there from the very first computer generation.

Operating systems keep evolving over the period of time.

Following are few of the important types of operating system which are most commonly

used.

1. Batch operating system

The users of batch operating system do not interact with the computer directly. Each user prepares his job on an

off-line device like punch cards and submits it to the computer operator. To speed up processing, jobs with similar

needs are batched together and run as a group. Thus, the programmers left their programs with the operator. The

operator then sorts programs into batches with similar requirements. Some computer systems only did one thing at

a time. They had a list of the computer system may be dedicated to a single program until its completion, or they

may be dynamically reassigned among a collection of active programs in different stages of execution.

Batch operating system is one where programs and data are collected together in a batch before

processing starts. A job is predefined sequence of commands, programs and data that are combined in to

a single unit called job.

Memory management in batch system is very simple. Memory is usually divided into two areas : Operating

system and user program area.

Scheduling is also simple in batch system. Jobs are processed in the order of submission i.e first come

first served fashion. When job completed execution, its memory is releases and the output for the job gets copied

into an output spool for later printing.

Batch system often provides simple forms of file management. Access to file is serial. Batch systems do not require

any time critical device management.

Batch systems are inconvenient for users because users can not interact with their jobs to fix problems. There may

also be long turn around times. Example of this system id generating monthly bank statement.

Advantages o Batch System

Move much of the work of the operator to the computer.

Increased performance since it was possible for job to start as soon as the previous job finished.

Disadvantages of Batch System

Turn around time can be large from user standpoint.

Difficult to debug program.

A job could enter an infinite loop.

A job could corrupt the monitor, thus affecting pending jobs.

2. Multiprogramming

When two or more programs are in memory at the same time, sharing the processor is referred to the

multiprogramming operating system. Multiprogramming assumes a single processor that is being shared. It

increases CPU utilization by organizing jobs so that the CPU always has one to execute. The operating system

keeps several jobs in memory at a time. This set of jobs is a subset of the jobs kept in the job pool. The

operating system picks and begins to execute one of the job in the memory. Multiprogrammed system provide

an environment in which the various system resources are utilized effectively, but they do not provide for user

interaction with the computer system.

Jobs entering into the system are kept into the memory. Operating system picks the job and begins to execute

one of the job in the memory. Having several programs in memory at the same time requires some form of

memory management. Multiprogramming operating system monitors the state of all active programs and

system resources. This ensures that the CPU is never idle unless there are no jobs.

Advantages

1. High CPU utilization.

2. It appears that many programs are allotted CPU almost simultaneously.

Disadvantages

1. CPU scheduling is requires.

2. To accommodate many jobs in memory, memory management is required.

Time-sharing operating systems

Time sharing is a technique which enables many people, located at various terminals, to use a particular

computer system at the same time. Time-sharing or multitasking is a logical extension of

multiprogramming. Processor's time which is shared among multiple users simultaneously is termed as

time-sharing. The main difference between Multiprogrammed Batch Systems and Time-Sharing Systems

is that in case of Multiprogrammed batch systems, objective is to maximize processor use, whereas in

Time-Sharing Systems objective is to minimize response time.

Multiple jobs are executed by the CPU by switching between them, but the switches occur so frequently.

Thus, the user can receives an immediate response. For example, in a transaction processing, processor

execute each user program in a short burst or quantum of computation. That is if n users are present, each

user can get time quantum. When the user submits the command, the response time is in few seconds at

most.

Operating system uses CPU scheduling and multiprogramming to provide each user with a small portion of a time.

Computer systems that were designed primarily as batch systems have been modified to time-sharing systems.

Advantages of Timesharing operating systems are following

Provide advantage of quick response.

Avoids duplication of software.

Reduces CPU idle time.

Disadvantages of Timesharing operating systems are following.

Problem of reliability.

Question of security and integrity of user programs and data.

Problem of data communication.

Distributed operating System

Distributed systems use multiple central processors to serve multiple real time application and multiple users.

Data processing jobs are distributed among the processors accordingly to which one can perform each job most

efficiently.

The processors communicate with one another through various communication lines (such as high-speed buses

or telephone lines). These are referred as loosely coupled systems or distributed systems. Processors in a

distributed system may vary in size and function. These processors are referred as sites, nodes, computers and

so on.

The advantages of distributed systems are following.

With resource sharing facility user at one site may be able to use the resources available at another.

Speedup the exchange of data with one another via electronic mail.

If one site fails in a distributed system, the remaining sites can potentially continue operating.

Better service to the customers.

Reduction of the load on the host computer.

Reduction of delays in data processing.

Network operating System

Network Operating System runs on a server and and provides server the capability to manage data, users,

groups, security, applications, and other networking functions. The primary purpose of the network operating

system is to allow shared file and printer access among multiple computers in a network, typically a local

area network (LAN), a private network or to other networks. Examples of network operating systems are

Microsoft Windows Server 2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, Novell

NetWare, and BSD.

The advantages of network operating systems are following.

Centralized servers are highly stable.

Security is server managed.

Upgrades to new technologies and hardwares can be easily integrated into the system.

Remote access to servers is possible from different locations and types of systems.

The disadvantages of network operating systems are following.

 High cost of buying and running a server.

 Dependency on a central location for most operations.

 Regular maintenance and updates are required.

Real Time operating System

Real time system is defines as a data processing system in which the time interval required to process and

respond to inputs is so small that it controls the environment. Real time processing is always on line whereas on line

system need not be real time. The time taken by the system to respond to an input and display of required updated

information is termed as response time. So in this method response time is very less as compared to the online

processing.

Real-time systems are used when there are rigid time requirements on the operation of a processor or the

flow of data and real-time systems can be used as a control device in a dedicated application. Real-time operating

system has well-defined, fixed time constraints otherwise system will fail. For example Scientific experiments,

medical imaging systems, industrial control systems, weapon systems, robots, and home-applicance controllers, Air

traffic control system etc.

There are two types of real-time operating systems.

HARD REAL-TIME SYSTEMS

Hard real-time systems guarantee that critical tasks complete on time. In hard real-time systems secondary

storage is limited or missing with data stored in ROM. In these systems virtual memory is almost never

found.

SOFT REAL-TIME SYSTEMS

Soft real time systems are less restrictive. Critical real-time task gets priority over other tasks and retains

the priority until it completes. Soft real-time systems have limited utility than hard real-time

systems. For example, Multimedia, virtual reality, Advanced Scientific Projects like undersea

exploration and planetary rovers etc.

SYSTEM STRUCTURES

OS services-

OS provides an environment for execution of programs. It provides certain services to

programs and to the users of those programs. OS services are provided for the

convenience of the programmer, to make the programming task easier.

One set of SOS services provides functions that are helpful to the user –a. User

interface: All OS have a user interface(UI).Interfaces are of three types- Command

Line Interface: uses text commands and a method for entering them

Batch interface: commands and directives to control those commands are

entered into files and those files are executed.

Graphical user interface: This is a window system with a pointing device to

direct I/O, choose from menus and make selections and a keyboard to enter text.

b. Program execution: System must be able to load a program into memory and

run that program. The program must be able to end its execution either normally

or abnormally.

c. I/O operations: A running program may require I/O which may involve a file or an I/O

device. For efficiency and protection, users cannot control I/O

devices directly.

d. File system manipulation: Programs need to read and write files and

directories. They also need to create and delete them by name, search for

a given file, and list file information.

e. Communications: One process might need to exchange information with another process.

Such communication may occur between processes that are executing on the

same computer or between processes that are executing on different computer

systems tied together by a computer network. Communications may be

implemented via shared memory or through message passing.

f. Error detection: OS needs to be constantly aware of possible errors. Errors may

occur in the CPU and memory hardware, in I/O devices and in the user

program. For each type of error, OS takes appropriate action to ensure correct

and consistent computing.

System Calls

System calls provide an interface to the services made available by an

operating system.

An example to illustrate how system

calls are used:

Writing a simple program to read data from one file and copy them to

another file-

a) First input required is names of two files – input file and output file. Names can

be specified in many ways-

One approach is for the program to ask the user for the names of

two files.

In an interactive system, this approach will require a sequence of system calls,

to write a prompting message on screen and then read from the keyboard the

characters that define the two files.

On mouse based and icon based systems, a menu of file names is displayed in a

window where the user can use the mouse to select the source names and a window can

be opened for the destination name to be specified.

b) Once the two file names are obtained, program must open the input file and

create the output file. Each of these operations requires another system call.

When the program tries to open input file, no file of that name may exist or file is

protected against access. Program prints a message on console and terminates

abnormally.

If input file exists, we must create a new output file. If the output file with the same

name exists, the situation caused the program to abort or delete the existing file and

create a new one. Another option is to ask the user(via a sequence of system calls)

whether to replace the existing file or to abort the program.

When both files are set up, a loop reads from the input file and writes to the output file

(system calls respectively). Each read and write must return status information

regarding various possible error conditions. After entire file is copied, program closes

both files, write a message to the console or window and finally terminate normally.

Application developers design programs according to application programming

interface (API). API specifies set of functions that are available to an application

programmer.

Three of the most common API’s available to applicat ion programmers are the

Win32API for Windows Systems; POSIX API for POSIX based systems (which

include all versions of UNIX, Linux and Mac OS X) and Java API for designing

programs that run on Java virtual machine.

Pictorial representation of system calls-

The functions that make up the API typically invoke the actual system calls on behalf

of the application programmer.

Operating System Structure

Simple structure:

Operating systems of commercial systems started as a small, simple and limited

systems. Example is MS-DOS. It was written to provide the most functionality in

the least space, so it was not divided into modules.

But the interfaces and levels of functionality are not separated. It was also limited

by the hardware.

Layered approach:

With proper hardware support, OS can be broken into pieces that are smaller and

more appropriate. OS can then retain much greater control over the computer and

over the applications that make use of the computer. Under the top down approach,

the overall functionality and features are determined and are separated into

components.

A system can be made modular in many ways – one method is the layered approach

in which the OS is broken up into number of layers (levels). The bottom layer is the

hardware and the

highest layer is the user

interface.

The main advantage of layered approach is simplicity of construction and

debugging. The layers are selected so that each uses functions and services of only

lower level layers. This approach simplifies debugging and system verification.

The major difficulty with layered approach involves defining the various layers.

They tend to be less efficient than other types.

The best current methodology for operating system design involves using object

oriented programming techniques to create a modular kernel. The kernel has a set

of core components and dynamically links in additional services either during boot

time or run time.

UNIT 2

Concept of Process

A process is sequential program in execution. A process defines the fundamental unit of computation for the

computer. Components of process are :

1. Object Program

2. Data

3. Resources

4. Status of the process execution.

Object program i.e. code to be executed. Data is used for executing the program. While executing the program, it

may require some resources. Last component is used for verifying the status of the process execution. A process can

run to completion only when all requested resources have been allocated to the process. Two or more processes could

be executing the same program, each using their own data and resources.

Processes and Programs

Process is a dynamic entity, that is a program in execution. A process is a sequence of information executions.

Process exists in a limited span of time. Two or more processes could be executing the same program, each using

their own data and resources.

Program is a static entity made up of program statement. Program contains the instructions. A program exists at

single place in space and continues to exist. A program does not perform the action by itself.

Process State

When process executes, it changes state. Process state is defined as the current activity of the process. Fig. 3.1 shows

the general form of the process state transition diagram. Process state contains five states. Each process is in one of

the states. The states are listed below.

1. New

2. Ready

3. Running

4. Waiting

5. Terminated(exist)

1. New : A process that just been created.

2. Ready : Ready processes are waiting to have the processor allocated to them by the operating system so that they

can run.

3. Running : The process that is currently being executed. A running process possesses all the resources needed for

its execution, including the processor.

4. Waiting : A process that can not execute until some event occurs such as the completion of an I/O operation. The

running process may become suspended by invoking an I/O module.

5. Terminated : A process that has been released from the pool of executable processes by the operating system.

Diagram for Process State

Whenever processes changes state, the operating system reacts by placing the process PCB in the list that

corresponds to its new state. Only one

process can be running on any processor at any instant and many processes may be ready and waiting state.

Suspended Processes

Characteristics of suspend process

1. Suspended process is not immediately available for execution.

2. The process may or may not be waiting on an event.

3. For preventing the execution, process is suspend by OS, parent process, process itself and an agent.

4. Process may not be removed from the suspended state until the agent orders the removal.

Swapping is used to move all of a process from main memory to disk. When all the process by putting it in the

suspended state and transferring it to disk.

Reasons for process suspension

1. Swapping

2. Timing

3. Interactive user request

4. Parent process request

Swapping :

OS needs to release required main memory to bring in a process that is ready to execute.

Timing : Process may be suspended while waiting for the next time interval.

Interactive user request : Process may be suspended for debugging purpose by user.

Parent process request : To modify the suspended process or to coordinate the activity of various descendants.

3.2.2 Process Control Block (PCB)

Each process contains the process control block (PCB). PCB is the data structure used by the operating system.

Operating system groups all information that needs about particular process.

Process Management / Process Scheduling

Multiprogramming operating system allows more than one process to be loaded into the executable memory at a

time and for the loaded process to share the CPU using time multiplexing.

The scheduling mechanism is the part of the process manager that handles the removal of the running process from

the CPU and the selection of another process on the basis of particular strategy.

Scheduling Queues

When the process enters into the system, they are put into a job queue. This queue consists of all processes in the

system. The operating system also has other queues.

Device queue is a queue for which a list of processes waiting for a particular I/O device. Each device has its own

device queue. Fig. shows the queuing diagram of process scheduling. In the fig 3 queue is represented by rectangular

box. The circles represent the resources that serve the queues. The arrows indicate the flow of processes in the

system.

Schedulers

Schedulers are of three types.

1. Long Term Scheduler

2. Short Term Scheduler

3. Medium Term Scheduler

.1 Long Term Scheduler

It is also called job scheduler. Long term scheduler determines which programs are admitted to the system for

processing. Job scheduler selects processes from the queue and loads them into memory for execution. Process loads

into the memory for CPU scheduler. The primary objective of the job scheduler is to provide a balanced mix of jobs,

such as I/O bound and processor bound. It also controls the degree of multiprogramming. If the degree of

multiprogramming is stable, then the average rate of process creation must be equal to the average departure rate of

processes leaving the system.

On same systems, the long term scheduler may be absent or minimal. Time-sharing operating systems have no long

term scheduler. When process changes the state from new to ready, then there is a long term scheduler.

2 Short Term Scheduler

It is also called CPU scheduler. Main objective is increasing system performance in accordance with the chosen set

of criteria. It is the change of ready state to running state of the process. CPU scheduler selects from among the

processes that are ready to execute and allocates the CPU to one of them. Short term scheduler also known as

dispatcher, execute most frequently and makes the fine grained decision of which process to execute next. Short term

scheduler is faster than long tern scheduler.

.3 Medium Term Scheduler

Medium term scheduling is part of the swapping function. It removes the processes from the memory. It reduces the

degree of multiprogramming. The medium term scheduler is in charge of handling the swapped out-processes.

Medium term Scheduler is Shown as;

Queueing diagram with medium term scheduler

Running process may become suspended by making an I/O request. Suspended processes cannot make any progress

towards completion. In this condition, to remove the process from memory and make space for other process.

Suspended process is move to the secondary storage is called swapping, and the process is said to be swapped out or

rolled out. Swapping may be necessary to improve the process mix.

Comparison between Scheduler:

Sr. Long Term Short Term Medium Term

No.

1 It is job scheduler It is CPU Scheduler It is swapping

2 Speed is less than short Speed is very fast Speed is in between both

 term scheduler

3 It controls degree of Less control over Reduce the degree of

 multiprogramming degree of multiprogramming.

 multiprogramming

4 Absent or minimal in Minimal in time sharing Time sharing system use

 time sharing system. system. medium term scheduler.

5 It select processes from It select from among the Process can be

 pool and load them into processes that are ready reintroduced into memory

 memory for execution. to execute. and its execution can be

 continued.

6 Process state is (New to Process state is (Ready -

 Ready) to Running)

7 Select a good process, Select a new process for -

 mix of I/O bound and a CPU quite frequently.

 CPU bound.

Operation on Processes

Several operations are possible on the process. Process must be created and deleted dynamically. Operating system

must provide the environment for the process operation. We discuss the two main operations on processes.

1. Create a process

2. Terminate a process

Create Process

Operating system creates a new process with the specified or default attributes and identifier. A process may create

several new subprocesses. Syntax for creating new process is :

CREATE (processed, attributes)

Two names are used in the process they are parent process and child process.

Parent process is a creating process. Child process is created by the parent process. Child process may create another

subprocess. So it forms a tree of processes. When operating system issues a CREATE system call, it obtains a new

process control block from the pool of free memory, fills the fields with provided and default parameters, and insert

the PCB into the ready list. Thus it makes the specified process eligible to run the process.

When a process is created, it requires some parameters. These are priority, level of privilege, requirement of

memory, access right, memory protection information etc. Process will need certain resources, such as CPU time,

memory, files and I/O devices to complete the operation. When process creates a subprocess, that subprocess may

obtain its resources directly from the operating system. Otherwise it uses the resources of parent process.

When a process creates a new process, two possibilities exist in terms of execution.

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

For address space, two possibilities occur:

1. The child process is a duplicate of the parent process.

2. The child process has a program loaded into it.

Terminate a Process

DELETE system call is used for terminating a process. A process may delete itself or by another process. A process

can cause the termination of another process via an appropriate system call. The operating system reacts by

reclaiming all resources allocated to the specified process, closing files opened by or for the process. PCB is also

removed from its place of residence in the list and is returned to the free pool. The DELETE service is normally

invoked as a part of orderly program termination.

Following are the resources for terminating the child process by parent process.

1. The task given to the child is no longer required.

2. Child has exceeded its usage of some of the resources that it has been allocated.

3. Operating system does not allow a child to continue if its parent terminates.

Co-operating Processes

Co-operating process is a process that can affect or be affected by the other processes while executing. If suppose

any process is sharing data with other processes, then it is called co-operating process. Benefit of the co-operating

processes are :

1. Sharing of information

2. Increases computation speed

3. Modularity

4. Convenience

Co-operating processes share the information : Such as a file, memory etc. System must provide an environment to

allow concurrent access to these types of resources. Computation speed will increase if the computer has multiple

processing elements are connected together. System is constructed in a modular fashion. System function is divided

into number of modules. Behavior of co-operating processes is nondeterministic i.e. it depends on relative execution

sequence and cannot be predicted a priori. Co-operating processes are also Reproducible .

Introduction of Thread

A thread is a flow of execution through the process code, with its own program counter, system registers and stack.

Threads are a popular way to improve application performance through parallelism. A thread is sometimes called a

light weight process.

Threads represent a software approach to improving performance of operating system by reducing the over head

thread is equivalent to a classical process. Each thread belongs to exactly one process and no thread

can exist outside a process. Each thread represents a separate flow of control.

Fig. 4.1shows the single and multithreaded process Threads

Advantages of Thread

1. Thread minimize context switching time.

2. Use of threads provides concurrency within a process.

3. Efficient communication.

4. Economy- It is more economical to create and context switch threads.

5. Utilization of multiprocessor architectures –

The benefits of multithreading can be greatly increased in a multiprocessor architecture.

UNIT 3

Memory Management

Memory is central to the operation of a modern computer system. Memory is a large array of words or bytes, each

with its own address.

A program resides on a disk as a binary executable file. The program must be brought into memory and placed

within a process for it to be executed Depending on the memory management in use the process may be moved

between disk and memory during its execution. The collection of processes on the disk that are waiting to be brought

into memory for execution forms the input queue. i.e. selected one of the process in the input queue and to load that

process into memory. We can provide protection by using two registers, usually a base and a limit, as shown in fig.

7.1. the base register holds the smallest legal physical memory address; the limit register specifies the size of the

range. For example, if the base register holds 300040 and the limit register is 120900, then the program can legally

access all addresses from 300040 through 420939(inclusive).

A base and limit register define a logical address space.

The binding of instructions and data to memory addresses can be done at any step along the way:

Compile time: If it is known at compile time where the process will reside in memory, then absolute code can be

generated.

Load time: If it is not known at compile time where the process will reside in memory, then the compiler must

generate re-locatable code.

Execution time: If the process can be moved during its execution from one memory segment to another, then

binding must be delayed until run time.

Dynamic Loading

Better memory-space utilization can be done by dynamic loading. With dynamic loading, a routine is not loaded until

it is called. All routines are kept on disk in a re-locatable load format. The main program is loaded into memory and

is executed. The advantage of dynamic loading is that an unused routine is never loaded.

Dynamic Linking

Most operating systems support only static linking, in which system language libraries are treated like any other

object module and are combined by the loader into the binary program image. The concept of dynamic linking is

similar to that of dynamic loading. Rather than loading being postponed until execution time,

linking is postponed. This feature is usually used with system libraries, such as language subroutine libraries. With

dynamic linking, a stub is included in the image for each library-routine reference. This stub is a small piece of code

that indicates how to locate the appropriate memory-resident library routing.

The entire program and data of a process must be in physical memory for the process to execute. The size of a

process is limited to the size of physical memory. So that a process can be larger than the amount of memory

allocated to it, a technique called overlays is sometimes used. The idea of overlays is to keep in memory only those

instructions and data that are needed at any given time. When other instructions are needed, they are loaded into

space that was occupied previously by instructions that are no longer needed.

Example, consider a two-pass assembler. During pass 1, it constructs a symbol table; then, during pass 2, it generates

machine-language code. We may be able to partition such an assembler into pass 1 code, pass 2 code, the symbol

table 1, and common support routines used by both pass 1 and pass 2.

Let us consider

Pass1 70K Pass

2 80K

Symbol table 20K

Common routines 30K

To load everything at once, we would require 200K of memory. If only 150K is available, we cannot run our

process. But pass 1 and pass 2 do not need to be in memory at the same time. We thus define two overlays: Overlay

A is the symbol table, common routines, and pass 1, and overlay B is the symbol table, common routines, and pass 2.

We add an overlay driver (10K) and start with overlay A in memory. When we finish pass 1, we jump to the overlay

driver, which reads overlay B into memory, overwriting overlay A, and then transfers control to pass 2. Overlay A

needs only 120K, whereas overlay B needs 130K As in dynamic loading, overlays do not require any special support

from the operating system.

Logical versus Physical Address Space

An address generated by the CPU is commonly referred to as a logical address, whereas an address seen by the

memory unit is commonly referred to as a

physical address.

The compile-time and load-time address-binding schemes result in an environment where the logical and physical

addresses are the same. The execution-time address-binding scheme results in an environment where the logical and

physical addresses differ. In this case, we usually refer to the logical address as a virtual address. The set of all

logical addresses generated by a program is referred to as a logical address space; the set of all physical addresses

corresponding to these logical addresses is referred to as a physical address space.

The run-time mapping from virtual to physical addresses is done by the memory management unit (MMU), which is

a hardware device.

The base register is called a relocation register. The value in the relocation register is added to every address

generated by a user process at the time it is sent to memory. For example, if the base is at 13000, then an attempt by

the user to address location 0 dynamically relocated to location 14,000; an access to location 347 is mapped to

location 13347. The MS-DOS operating system running on the Intel 80x86 family of processors uses four relocation

registers when loading and running processes.

The user program never sees the real physical addresses. The program can create a pointer to location 347 store it

memory, manipulate it, compare it to other addresses all as the number 347.

The user program deals with logical addresses. The memory-mapping hardware converts logical addresses into

physical addressed Logical addresses (in the range 0 to max) and physical addresses (in the range R + 0 to R + max

for a base value R). The user generates only logical addresses.

The concept of a logical address space that is bound to a separate

physical address space is central to proper memory management.

Swapping

A process, can be swapped temporarily out of memory to a backing store, and then brought back into memory for

continued execution. Assume a multiprogramming environment with a round robin CPU-scheduling algorithm.

When a quantum expires, the memory manager will start to swap out the process that just finished, and to swap in

another process to the memory space that has been freed . Fig . When each process finishes its quantum, it will be

swapped with another process.

Swapping of two processes using a disk as a blocking store

A variant of this swapping policy is used for priority-based scheduling algorithms. If a higher-priority process arrives

and wants service, the memory manager can swap out the lower-priority process so that it can load and execute the

higher priority process. When the higher priority process finishes, the lower-priority process can be swapped back in

and continued. This variant of swapping is sometimes called rollout, roll in. A process is swapped out will be

swapped back into the same memory space that it occupies previously. If binding is done at assembly or load time,

then the process cannot be moved to different location. If execution-time binding is being used, then it is possible to

swap a process into a different memory space.

Swapping requires a backing store. The backing store is commonly a fast disk. It is large enough to accommodate

copies of all memory images for all users. The system maintains a ready queue consisting of all processes whose

memory images are on the backing store or in memory and are ready to run.

The context-switch time in such a swapping system is fairly high. Let us assume that the user process is of size 100K

and the backing store is a standard hard disk with transfer rate of 1 megabyte per second. The actual transfer of the

100K process to or from memory takes

100K / 1000K per second = 1/10 second

= 100 milliseconds

Contiguous Allocation

The main memory must accommodate both the operating system and the various user processes. The memory is

usually divided into two partitions, one for the resident operating system, and one for the user processes.

To place the operating system in low memory. Thus, we shall discuss only me situation where the operating system

resides in low memory (Figure 8.5). The development of the other situation is similar. Common Operating System is

placed in low memory.

7.3.1 Single-Partition Allocation

If the operating system is residing in low memory, and the user processes are executing in high memory. And

operating-system code and data are protected from changes by the user processes. We also need protect the user

processes from one another. We can provide this 2 protection by using a relocation registers.

The relocation register contains the value of the smallest physical address; the limit register contains the range of

logical addresses (for example, relocation = 100,040 and limit = 74,600). With relocation and limit registers, each

logical address must be less than the limit register; the MMU maps the logical address dynamically by adding the

value in the relocation register. This mapped address is sent to memory.

The relocation-register scheme provides an effective way to allow the operating system size to change dynamically.

Multiple-Partition Allocation

One of the simplest schemes for memory allocation is to divide memory into a number of fixed-sized partitions. Each

partition may contain exactly one process. Thus, the degree of multiprogramming is bound by the number of

partitions. When a partition is free, a process is selected from the input queue and is loaded into the free partition.

When the process terminates, the partition becomes available for another process.

The operating system keeps a table indicating which parts of memory are available and which are occupied. Initially,

all memory is available for user processes, and is considered as one large block, of available memory, a hole. When a

process arrives and needs memory, we search for a hole large enough for this process.

For example, assume that we have 2560K of memory available and a resident operating system of 400K. This

situation leaves 2160K for user processes. FCFS job scheduling, we can immediately allocate memory to processes

P1, P2, P3. Holes size 260K that cannot be used by any of the remaining processes in the input queue. Using a

round-robin CPU-scheduling with a quantum of 1 time unit, process will terminate at time 14, releasing its memory.

Memory allocation is done using Round-Robin Sequence as shown in fig. When a process arrives and needs

memory, we search this set for a hole that is large enough for this process. If the hole is too large, it is split into two:

One part is allocated to the arriving process; the other is returned to the set of holes. When a process terminates, it

releases its block of memory, which is then placed back in the set of holes. If the new hole is adjacent to other holes,

we merge these adjacent holes to form one larger hole.

This procedure is a particular instance of the general dynamic storage-allocation problem, which is how to satisfy a

request of size n from a list of free holes. There are many solutions to this problem. The set of holes is searched to

determine which hole is best to allocate, first-fit, best-fit, and worst-fit are the most common strategies used to select

a free hole from the set of available holes.

First-fit: Allocate the first hole that is big enough. Searching can start either at the beginning of the set of holes or

where the previous first-fit search ended. We can stop searching as soon as we find a free hole that is large enough.

Best-fit: Allocate the smallest hole that is big enough. We must search the entire list, unless the list is kept ordered

by size. This strategy-produces the smallest leftover hole.

Worst-fit: Allocate the largest hole. Again, we must search the entire list unless it is sorted by size. This strategy

produces the largest leftover hole which may be more useful than the smaller leftover hole from a best-t approach.

External and Internal Fragmentation

As processes are loaded and removed from memory, the free memory space is broken into little pieces. External

fragmentation exists when enough to the memory space exists to satisfy a request, but it is not contiguous; storage is

fragmented into a large number of small holes.

Depending on the total amount of memory storage and the average process size, external fragmentation may be

either a minor or a major problem.

Given N allocated blocks, another 0.5N blocks will be lost due to fragmentation. That is, one-third of memory may

be unusable. This property is known as the 50- percent rule. Internal fragmentation - memory that is internal to

partition, but is not being used.

Paging

External fragmentation is avoided by using paging. In this physical memory is broken into blocks of the same size

called pages. When a process is to be executed, its pages are loaded into any available memory frames. Every

address generated by the CPU is divided into any two parts: a page number(p) and a page offset(d) (Fig 7.3). The

page number is used as an index into a page table. The page table contains the base address of each page in physical

memory. This base address is combined with the gage offset to define the physical memory address that is sent to the

memory unit.

Paging Hardware

The page size like is defined by the hardware. The size of a page is typically a power of 2 varying between 512 bytes

and 8192 bytes per page, depending on the computer architecture. The selection of a power of 2 as a page size makes

the translation of a logical address into a page number and page offset. lf the size of logical address space is 2m, and

a page size is 2n addressing units (bytes or words), then the high-order m - n bits of a logical address designate the

page number, and the n low-order bits designate the page offset. Thus, the logical address is as follows:

page number

page offset p

d

m – n n

where p is an index into the page table and d is the displacement within the page.

Paging is a form of dynamic relocation. Every logical address is bound by the paging hardware to some physical

address.

When we use a paging scheme, we have no external fragmentation: Any free

frame can be allocated to a process that needs it.

If process size is independent of page size, we can have internal fragmentation to average one-half page per process.

When a process arrives in the system to be executed, its size, expressed in pages, is examined. Each page of the

process needs one frame. Thus, if the process requires n pages, there must be at least n frames available in memory.

If there are n frames available, they are allocated to this arriving process. The first page of the process is loaded into

one of the allocated frames and the frame number is put in the page table for this process. The next page is loaded

into another frame, and its frame number is put into the page table, and so on.

The user program views that memory as one single contiguous space, containing only this one program. But the user

program is scattered throughout physical memory and logical addresses are translated into physical addresses.

The operating system is managing physical memory, it must be aware of the allocation details of physical memory:

which frames are allocated, which frames are available, how many total frames there are, and so on. This information

is generally kept in a data structure called a frame table. The frame table has one entry for each physical page frame,

indicating whether the latter is free allocated and, if it is allocated, to which page of which process or processes.

The operating system maintains a copy of the page table for each process. Paging therefore increases the context-

switch time.

Segmentation

A user program can be subdivided using segmentation, in which the program and its associated data are divided into

a number of segments. It is not required that all segments of all programs be of the same length, although there is a

maximum segment length. As with paging, a logical address using segmentation consists of two parts, in this case a

segment number and an offset.

Because of the use of unequal-size segments, segmentation is similar to dynamic partitioning. In segmentation, a

program may occupy more than one partition, and these partitions need not be contiguous. Segmentation eliminates

internal fragmentation but, like dynamic partitioning, it suffers from external fragmentation. However, because a

process is broken up into a number of smaller pieces, the external fragmentation should be less. Whereas paging is

invisible to the programmer, segmentation usually visible and is provided as a convenience for organizing programs

and data.

Another consequence of unequal-size segments is that there is no simple relationship between logical addresses and

physical addresses. Segmentation scheme would make use of a segment table for each process and a list of free

blocks of main memory. Each segment table entry would have to as in paging give the starting address in main

memory of the corresponding segment. The entry should also provide the length of the segment, to assure that

invalid addresses are not used. When a process enters the Running state, the address of its segment table is loaded

into a special register used by the memory management hardware.

Consider an address of n + m bits, where the leftmost n bits are the segment number and the rightmost m bits are the

offset. The following steps are needed for address translation:

Extract the segment number as the leftmost n bits of the logical address.

Use the segment number as an index into the process segment table to find the starting physical address of the

segment. Compare the offset, expressed in the rightmost m bits, to the length of the segment. If the offset is greater

than or equal to the length, the address is invalid. The desired physical address is the sum of the starting physical

address of the segment plus the offset. Segmentation and paging can be combined to have a good result.

Virtual Memory

Virtual memory is a technique that allows the execution of process that may not be completely in memory. The main

visible advantage of this scheme is that programs can be larger than physical memory.

Virtual memory is the separation of user logical memory from physical memory this separation allows an extremely

large virtual memory to be provided for programmers when only a smaller physical memory is available (Fig 8.1).

Following are the situations, when entire program is not required to load fully.

1. User written error handling routines are used only when an error occurs in the data or computation.

2. Certain options and features of a program may be used rarely.

3. Many tables are assigned a fixed amount of address space even though only a small amount of the table is actually

used.

The ability to execute a program that is only partially in memory would counter many benefits.

1. Less number of I/O would be needed to load or swap each user program into memory.

2. A program would no longer be constrained by the amount of physical memory that is available.

3. Each user program could take less physical memory, more programs could be run the same time, with a

corresponding increase in CPU utilization and throughput.

Virtual memory is commonly implemented by demand paging. It can also be

implemented in a segmentation system. Demand segmentation can also be used to provide virtual memory.

Demand Paging

A demand paging is similar to a paging system with swapping(Fig 8.2). When we want to execute a process, we

swap it into memory. Rather than swapping the entire process into memory.

When a process is to be swapped in, the pager guesses which pages will be

used before the process is swapped out again Instead of swapping in a whole process, the pager brings only those

necessary pages into memory. Thus, it avoids reading into memory pages that will not be used in anyway, decreasing

the swap time and the amount of physical memory needed.

Hardware support is required to distinguish between those pages that are in memory and those pages that are on the

disk using the valid-invalid bit scheme. Where valid and invalid pages can be checked checking the bit and marking

a page will have no effect if the process never attempts to access the pages. While the process executes and accesses

pages that are memory resident, execution proceeds normally.

Transfer of a paged memory to continuous disk space

Advantages of Demand Paging:

1. Large virtual memory.

2. More efficient use of memory.

3. Unconstrained multiprogramming. There is no limit on degree of multiprogramming.

Disadvantages of Demand Paging:

1. Number of tables and amount of processor over head for handling page interrupts are greater than in the case of

the simple paged management techniques.

2. due to the lack of an explicit constraints on a jobs address space size.

Page Replacement Algorithm

There are many different page replacement algorithms. We evaluate an algorithm by running it on a particular string

of memory reference and computing the number of page faults. The string of memory references is called reference

string. Reference strings are generated artificially or by tracing a given system and recording the address of each

memory reference. The latter choice produces a large number of data.

1. For a given page size we need to consider only the page number, not the

entire address.

2. if we have a reference to a page p, then any immediately following references to

page p will never cause a page fault. Page p will be in memory after the

first reference; the immediately following references will not fault.

Eg:- consider the address sequence

0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103,

0104, 0101, 0610, 0102, 0103, 0104, 0104, 0101, 0609, 0102, 0105 and reduce to 1, 4, 1, 6,1, 6, 1, 6, 1, 6, 1

To determine the number of page faults for a particular reference string and page replacement algorithm, we also

need to know the number of page frames available. As the number of frames available increase, the number of page

faults

will decrease.

FIFO Algorithm

The simplest page-replacement algorithm is a FIFO algorithm. A FIFO replacement algorithm associates with each

page the time when that page was brought into memory. When a page must be replaced, the oldest page is chosen.

We can create a FIFO queue to hold all pages in memory.

The first three references (7, 0, 1) cause page faults, and are brought into these empty eg. 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0,

3, 2, 1, 2, 0, 1 and consider 3 frames. This replacement means that the next reference to 0 will fault. Page 1 is then

replaced by page 0.

Optimal Algorithm

An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. An optimal page-

replacement algorithm exists, and has been called OPT or MIN. It is simply

Replace the page that will not be

used for the longest period of time.

Now consider the same string with 3 empty frames. The reference to page 2 replaces page 7, because 7 will not be

used until reference 18, whereas page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces page 1,

as page 1 will be the last of the three pages in memory to be referenced again. Optimal replacement is much better

than a FIFO.

The optimal page-replacement algorithm is difficult to implement, because it requires future knowledge of the

reference string.

LRU Algorithm

The FIFO algorithm uses the time when a page was brought into memory; the OPT algorithm uses the time when a

page is to be used. In LRU replace the

page that has not been used for the longest period of time.

LRU replacement associates with each page the time of that page's last use. When a page must be replaced, LRU

chooses that page that has not been used for the longest period of time.

Let SR be the reverse of a reference string S, then the page-fault rate for the OPT algorithm on S is the same as the

page-fault rate for the OPT algorithm on SR.

LRU Approximation Algorithms

Some systems provide no hardware support, and other page-replacement algorithm. Many systems provide some

help, however, in the form of a reference bit. The reference bit for a page is set, by the hardware, whenever that page

is referenced. Reference bits are associated with each entry in the page table Initially, all bits are cleared (to 0) by the

operating system. As a user process executes, the bit associated with each page referenced is set (to 1) by the

hardware.

Additional-Reference-Bits Algorithm

The operating system shifts the reference bit for each page into the high-order or of its 8-bit byte, shifting the other

bits right 1 bit, discarding the low-order bit.

These 8-bit shift registers contain the history of page use for the last eight time periods. If the shift register contains

00000000, then the page has not been

used for eight time periods; a page that is used at least once each period would have a shift register value of

11111111.

UNIT 4

DEADLOCKS

In a multiprogramming environment, several processes may compete for a finite number of resources. A process

requests resources; if the resources are not available at that time, the process enters a wait state. It may happen that

waiting processes will never again change state, because the resources they have requested are held by other waiting

processes. This situation is called deadlock. If a process requests an instance of a resource type, the allocation of any

instance of the type will satisfy the request. If it will not, then the instances are not identical, and the resource type

classes have not been defined properly.

A process must request a resource before using it, and must release the resource after using it. A process may request

as many resources as it requires to carry out its designated task.

Under the normal mode of operation, a process may utilize a resource in only the following sequence:

1. Request: If the request cannot be granted immediately, then the requesting process must wait until it can acquire

the resource.

2. Use: The process can operate on the resource.

3. Release: The process releases the resource

Deadlock Characterization

In deadlock, processes never finish executing and system resources are tied up, preventing other jobs from ever

starting.

Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultaneously in a system:

1. Mutual exclusion: At least one resource must be held in a non-sharable mode; that is, only one process at a time

can use the resource. If another process requests that resource, the requesting process must be delayed until the

resource has been released.

2. Hold and wait : There must exist a process that is holding at least one resource and is waiting to acquire

additional resources that are currently being held by other processes.

3. No preemption : Resources cannot be preempted; that is, a resource can be released only voluntarily by the

process holding it, after that process, has completed its task.

4. Circular wait: There must exist a set {P0, P1, ..., Pn } of waiting processes such that P0 is waiting for a resource

that is held by P1, P1 is waiting for a resource that is held by P2, …., Pn-1 is waiting for a resource that is held by

Pn, and Pn is waiting for a resource that is held by P0.

Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called a system resource-allocation graph.

The set of vertices V is partitioned into two different types of nodes P = {P1, P2, … Pn} the set consisting of all the

active

processes in the system; and R = {R1, R2, …, R1}, the set consisting of all resource types in the system.

A directed edge from process Pi to resource type Rj is denoted by Pi → Rj, it signifies that process Pi requested an

instance of resource type Rj and is currently waiting for that resource. A directed edge from resource type Rj

toprocess Pi is denoted by Rj_ Pi it signifies that an instance of resource type Rj has been allocated to process Pi. A

directed edge Pi_ Rj is called a request edge; a directed edge Rj _ Pi is called an assignment edge.

When process Pi requests an instance of resource type Rj, a request edge is inserted in the resource-allocation graph.

When this request can be fulfilled, the request edge is instantaneously transformed to an assignment edge. When the

process no longer needs access to the, resource it releases the resource, and as a result the assignment edge is deleted.

Definition of a resource-allocation graph, it can be shown that, if the graph contains no cycles, then no process in the

system is deadlocked. If, on the other hand, the graph contains the cycle, then a deadlock must exist.

If each resource type has several instances, then a cycle implies that a deadlock has occurred. If the cycle involves

only a set of resources types, each of which has only a single instance, then a deadlock has occurred. Each process

involved in the cycle is deadlocked. In this case, a cycle in the graph is both a necessary and a sufficient condition for

the existence of deadlock.

A set of vertices V and a set of edges E.

V is partitioned into two types:

o P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

o R = {R1, R2, …, Rm}, the set consisting of all resource types in the

system. request edge – directed edge P1 Rj

assignment edge – directed edge Rj Pi

Resource Allocation Graph

If each resource type has several instance, then a cycle does not necessarily imply that a deadlock incurred. In this

case, a cycle in the graph is a necessary but not a sufficient condition for the existence of deadlock.

Suppose that process P3requests an instance of resource type R2 Since no resource instance is currently available, a

request edge P3 → R2 is added to the graph. At this point, two minimal cycles exist in the system:

P1 → R1 → P2 → R3 → P3 → R2 → P1

P2 → R3 → P3 → R2 → P2

Resource Allocation Graph with Deadlock

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, which is held by process P3.

Process P3, on the other hand, is waiting for either process P1 or process P2 to release resource R2. In addition,

process PI is

waiting for process P2 to release resource R1.

__

Method For Handling Deadlock //Detection

There are are three different methods for dealing with the deadlock problem:

• We can use a protocol to ensure that the system will never enter a deadlock state.

• We can allow the system to enter a deadlock state and then recover. • We can ignore the problem all together, and

pretend that deadlocks never occur in the system. This solution is the one used by most operating systems, including

UNIX.

Deadlock avoidance, on the other hand, requires that the operating system be given in advance additional information

concerning which resources a process will request and use during its lifetime. With this additional knowledge, we can

decide for each request whether or not the process should wait. Each request requires that the system consider the

resources currently available, the resources currently allocated to each process, and the future requests and releases

of each process, to decide whether the current request can be satisfied or must be delayed.

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, then a deadlock

situation may occur If a system does not ensure that a deadlock will never occur, and also does not provide a

mechanism for deadlock detection and recovery, then we may arrive at a situation where the system is in a deadlock

state yet has no way of recognizing what has happened.

Deadlock Prevention

For a deadlock to occur, each of the four necessary-conditions must hold. By ensuring that at least on one these

conditions cannot hold, we can prevent the occurrence of a deadlock.

Mutual Exclusion

The mutual-exclusion condition must hold for non-sharable resources. For example, a printer cannot be

simultaneously shared by several processes. Sharable resources, on the other hand, do not require mutually exclusive

access, and thus cannot be involved in a deadlock.

Hold and Wait

1. When whenever a process requests a resource, it does not hold any other resources. One protocol that be used

requires each process to request and be allocated all its resources before it begins execution.

2. An alternative protocol allows a process to request resources only when the process has none. A process may

request some resources and use them. Before it can request any additional resources, however it must release all the

resources that it is currently allocated here are two main disadvantages to these protocols. First, resource utilization

may be low, since many of the resources may be allocated but unused for a long period. In the example given, for

instance, we can release the tape drive and disk file, and then again request the disk file and printer, only if we can be

sure that our data will remain on the disk file. If we cannot be assured that they will, then we must request all

resources at the beginning for both protocols.

Second, starvation is possible.

No Preemption

If a process that is holding some resources requests another resource that cannot be immediately allocated to it, then

all resources currently being held are preempted. That is this resources are implicitly released. The preempted

resources are added to the list of resources for which the process is waiting process will be restarted only when it can

regain its old resources, as well as the new ones that it is requesting.

Circular Wait

Circular-wait condition never holds is to impose a total ordering of all resource types, and to require that each

process requests resources in an increasing order of enumeration. Let R = {R1, R2, ..., Rn} be the set of resource

types. We assign to each resource type a unique integer number, which allows us to compare two resources and to

determine whether one precedes another in our ordering. Formally, we define a one-to-one function F: R _ N, where

N is the set of natural numbers.

Deadlock Avoidance

Prevent deadlocks requests can be made. The restraints ensure that at least one of the necessary conditions for

deadlock cannot occur, and, hence, that deadlocks cannot hold. Possible side effects of preventing deadlocks by this,

melted, however, are Tow device utilization and reduced system throughput.

An alternative method for avoiding deadlocks is to require additional information about how resources are to be

requested. For example, in a system with one tape drive and one printer, we might be told that process P will request

first the tape drive, and later the printer, before releasing both resources. Process Q on the other hand, will request

first the printer, and then the tape drive. With this knowledge of the complete sequence of requests and releases for

each process we can decide for each request whether or not the process should wait.

A deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can never be

a circular wait condition. The resource allocation state is defined by the number of available and allocated resources,

and the maximum demands of the processes.

Safe State

A state is safe if the system can allocate resources to each process (up to its maximum) in some order and still avoid

a deadlock. More formally, a system is in

a safe state only if there exists a safe sequence. A sequence of processes <P1, P2, .. Pn> is a safe sequence for the

current allocation state if, for each Pi the resources that Pj can still request can be satisfied by the currently available

resources plus the resources held by all the Pj, with j < i. In this situation, if the resources that process Pi needs are

not immediately available, then Pi can wait until all Pj have finished. When they have finished, Pi can obtain all of

its needed resources, complete its designated task return its allocated resources, and terminate. When Pi terminates,

Pi + 1 can obtain its needed resources, and so on.

Safe, Unsafe & Deadlock State

Banker's Algorithm

The resource-allocation graph algorithm is not applicable to a resource-allocation system with multiple instances of

each resource type. The deadlock-avoidance algorithm that we describe next is applicable to such a system, but is

less efficient than the resource-allocation graph scheme. This algorithm is commonly known as the banker's

algorithm.

Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, then a deadlock

situation may occur.

• An algorithm that examines the state of the system to determine whether a deadlock has occurred.

• An algorithm to recover from the deadlock.

Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock detection algorithm that uses a variant of

the resource-allocation graph, called a wait-for graph. We obtain this graph from the resource-allocation graph by

removing the nodes of type resource and collapsing the appropriate edges.

Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system with multiple instances of each resource

type.

The algorithm used are :

• Available: A vector of length m indicates the number of available resources of each type.

• Allocation: An n x m matrix defines the number of resources of each type currently allocated to each process.

• Request: An n x m matrix indicates the current request of each process. If Request [i, j] = k, then process P, is

requesting k more instances of resource type Rj.

Detection-Algorithm Usage

If deadlocks occur frequently, then the detection algorithm should be invoked frequently. Resources allocated to

deadlocked processes will be idle until the deadlock can be broken.

Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several alternatives exist. One possibility is to inform

the operator that a deadlock has spurred, and to let the operator deal with the deadlock manually. The other

possibility is to let the system recover from the deadlock automatically. There are two options for breaking a

deadlock. One solution is simply to abort one or more processes to break the circular wait. The second option is to

preempt some resources from one or more of the deadlocked processes.

Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In both methods, the system reclaims all

resources allocated to the terminated processes.

• Abort all deadlocked processes: This method clearly will break the dead – lock cycle, but at a great expense,

since these processes may have computed for a long time, and the results of these partial computations must be

discarded, and probably must be recomputed.

• Abort one process at a time until the deadlock cycle is eliminated: This method incurs considerable overhead,

since after each process is aborted a deadlock-detection algorithm must be invoked to determine whether a processes

are still deadlocked.

Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt some resources from processes and give

these resources to other processes until he deadlock cycle is broken.

The three issues are considered to recover from deadlock

1. Selecting a victim

2. Rollback

3. Starvation

UNIT 5

Disk Structure

Disk provide bulk of secondary storage of computer system. The disk can be considered the one I/O device that is

common to each and every computer. Disks come in many size and speeds, and information may be stored optically

or magnetically. Magnetic tape was used as an early secondary storage medium, but the access time is much slower

than for disks. For backup, tapes are currently used.

Modern disk drives are addressed as large one dimensional arrays of logical blocks, where the logical block is the

smallest unit of transfer. The actual details of disk I/O operation depends on the computer system, the operating

system and the nature of the I/O channel and disk controller hardware.

The basic unit of information storage is a sector. The sectors are stored on a flat, circular, media disk. This media

spins close to one or more read/write heads. The heads can move from the inner portion of the disk to the outer

portion.

When the disk drive is operating, the disk is rotating at constant speed. To read or write, the head must be positioned

at the desired track and at the beginning of the desired sector on that track. Track selection involves moving the head

in a movable head system or electronically selecting one head on a fixed head system. These characteristics are

common to floppy disks, hard disks, CD-ROM and DVD.

Disk Performance Parameters

When the disk drive is operating, the disk is rotating at constant speed. To read or write, the head must be positioned

at the desired track and at the beginning of the desired sector on that track.

Track selection involves moving the head in a movable-head system or electronically selecting one head on a fixed-

head system. On a movable-head system, the time it takes to position the head at the track is known as seek time.

When once the track is selected, the disk controller waits until the appropriate sector rotates to line up with the head.

The time it takes for the beginning of the sector to reach the head is known as rotational delay, or rotational latency.

The sum of the seek time, if any, and the rotational delay equals the access time, which is the time it takes to get into

position to read or write.

Once the head is in position, the read or write operation is then performed as the sector moves under the head; this is

the data transfer portion of the operation; the time required for the transfer is the transfer time.

Seek Time Seek time is the time required to move the disk arm to the required track. It turns out that this is a

difficult quantity to pin down. The seek time consists of two key components: the initial startup time and the time

taken to traverse the tracks that have to be crossed once the access arm is up to speed.

Ts = m x n + s

Rotational Delay Disks, other than floppy disks, rotate at speeds ranging from 3600 rpm up to, as of this writing,

15,000 rpm; at this latter speed, there is one revolution per 4 ms. Thus, on the average, the rotational delay will be 2

ms. Floppy disks typically rotate at between 300 and 600 rpm. Thus the average delay will be between 100 and 50

ms.

Transfer Time The transfer time to or from the disk depends on the rotation speed of the disk in the following

fashion:

T= b/rN

where

T = transfer time

b = number of bytes to be transferred

N = number of bytes on a track

r = rotation speed, in revolutions per second

Thus the total average access time can be expressed as

Ta = Ts +

where Ts is the average seek time.

Disk Scheduling

The amount of head needed to satisfy a series of I/O request can affect the performance. If desired disk drive and

controller are available, the request can be serviced immediately. If a device or controller is busy, any new requests

for service will be placed on the queue of pending requests for that drive. When one request is completed, the

operating system chooses which pending request to service next.

Different types of scheduling algorithms are as follows.

1. First Come, First Served scheduling algorithm(FCFS).

2. Shortest Seek Time First (SSTF) algorithm

3. SCAN algorithm

4. Circular SCAN (C-SCAN) algorithm

5. Look Scheduling Algorithm

First Come, First Served scheduling algorithm(FCFS).

The simplest form of scheduling is first-in-first-out (FIFO) scheduling, which processes items from the queue in

sequential order. This strategy has the advantage of being fair, because every request is honored and the requests are

honored in the order received. With FIFO, if there are only a few processes that require access and if many of the

requests are to clustered file sectors, then we can hope for good performance.

Priority With a system based on priority (PRI), the control of the scheduling is outside the control of disk

management software.

Last In First Out ln transaction processing systems, giving the device to the most recent user should result. In little

or no arm movement for moving through a sequential file. Taking advantage of this locality improves throughput and

reduces queue length.

Shortest Seek Time First (SSTF) algorithm

The SSTF policy is to select the disk I/O request the requires the least movement of the disk arm from its current

position. Scan With the exception of FIFO, all of the policies described so far can leave some request unfulfilled

until the entire queue is emptied. That is, there may always be new requests arriving that will be chosen before an

existing request.

The choice should provide better performance than FCFS algorithm.

Under heavy load, SSTF can prevent distant request from ever being serviced. This phenomenon is known as

starvation. SSTF scheduling is

essentially a from of shortest job first scheduling. SSTF scheduling algorithm are not very popular because of two

reasons.

1. Starvation possibly exists.

2. it increases higher overheads.

SCAN scheduling algorithm

The scan algorithm has the head start at track 0 and move towards the highest numbered track, servicing all requests

for a track as it passes the track. The service direction is then reserved and the scan proceeds in the opposite

direction, again picking up all requests in order.

SCAN algorithm is guaranteed to service every request in one complete pass through the disk. SCAN algorithm

behaves almost identically with the SSTF algorithm. The SCAN algorithm is sometimes called elevator algorithm.

C SCAN Scheduling Algorithm

The C-SCAN policy restricts scanning to one direction only. Thus, when the last track has been visited in one

direction, the arm is returned to the opposite end of the disk and the scan begins again.

This reduces the maximum delay experienced by new requests.

LOOK Scheduling Algorithm

Start the head moving in one direction. Satisfy the request for the closest track in that direction when there is no

more request in the direction, the head is traveling, reverse direction and repeat. This algorithm is similar to

innermost and outermost track on each circuit.

Disk Management

Operating system is responsible for disk management. Following are some activities discussed.

Disk Formatting

Disk formatting is of two types.

a) Physical formatting or low level formatting.

b) Logical Formatting

Physical Formatting

Disk must be formatted before storing data.

Disk must be divided into sectors that the disk controllers can read/write.

Low level formatting files the disk with a special data structure for each sector.

Data structure consists of three fields: header, data area and trailer.

Header and trailer contain information used by the disk controller.

Sector number and Error Correcting Codes (ECC) contained in the header and

trailer. For writing data to the sector – ECC is updated.

For reading data from the sector – ECC is recalculated.

Low level formatting is done at factory.

Logical Formatting

After disk is partitioned, logical formatting used.

Operating system stores the initial file system data structures onto the disk.

Boot Block

When a computer system is powered up or rebooted, a program in read only memory

executes. Diagnostic check is done first.

Stage 0 boot program is executed.

Boot program reads the first sector from the boot device and contains a stage-1 boot program.

May be boot sector will not contain a boot program.

PC booting from hard disk, the boot sector also contains a partition table.

The code in the boot ROM instructs the disk controller to read the boot blocks into memory and then starts executing

that code. Full boot strap program is more sophisticated than the bootstrap loader in the boot ROM.

Swap Space Management

Swap space management is low level task of the operating system. The main goal for the design and implementation

of swap space is to provide the best throughput for the virtual memory system.

Swap-Space Use

The operating system needs to release sufficient main memory to bring in a process that is ready to execute.

Operating system uses this swap space in various way. Paging systems may simply store pages that have been pushed

out of main memory. Unix operating system allows the use of multiple swap space are usually put on separate disks,

so the load placed on the I/O system by paging and swapping can be spread over the systems I/O devices.

Swap Space Location

Swap space can reside in two places:

1. Separate disk partition

2. Normal file System

If the swap space is simply a large file within the file system, normal file system routines can be used to create it,

name it and allocate its space. This is easy to implement but also inefficient. External fragmentation can greatly

increase swapping times. Catching is used to improve the system performance. Block of information is cached in the

physical memory, and by using special tools to allocate physically continuous blocks for the swap file.

Swap space can be created in a separate disk partition. No file system or directory structure is placed on this space. A

separate swap space storage manager is used to allocate and deallocate the blocks. This manager uses algorithms

optimized for speed. Internal fragmentation may increase. Some operating systems are flexible and can swap both in

raw partitions and in file system space.

Stable Storage Implementation

The write ahead log, which required the availability of stable storage.

By definition, information residing in stable storage is never lost.

To implement such storage, we need to replicate the required information on multiple storage devices (usually disks)

with independent failure modes.

We also need to coordinate the writing of updates in a way that guarantees that a failure

during an update will not leave all the copies in a damaged state and that, when we are

recovering from failure, we can force all copies to a consistent and correct value, even if

another failure occurs during the recovery.

Disk Reliability

Good performance means high speed, another important aspect of performance is

reliability.

A fixed disk drive is likely to be more reliable than a removable disk or tape drive.

An optical cartridge is likely to be more reliable than a magnetic disk or tape.

A head crash in a fixed hard disk generally destroys the data, whereas the failure of a tape

drive or optical disk drive often leaves the data cartridge unharmed.

Chapter 3

Loaders and Linkers

This Chapter gives you…

 Basic Loader Functions

 Machine-Dependent Loader Features

 Machine-Independent Loader Features

 Loader Design Options
 Implementation Examples

2. Introduction

The Source Program written in assembly language or high level language will be

converted to object program, which is in the machine language form for execution. This

conversion either from assembler or from compiler, contains translated instructions and

data values from the source program, or specifies addresses in primary memory where

these items are to be loaded for execution.

This contains the following three processes, and they are,

Loading - which allocates memory location and brings the object program into

memory for execution - (Loader)

Linking- which combines two or more separate object programs and supplies the

information needed to allow references between them - (Linker)

Relocation - which modifies the object program so that it can be loaded at an

address different from the location originally specified - (Linking Loader)

3.1 Basic Loader Functions

A loader is a system program that performs the loading function. It brings object

program into memory and starts its execution. The role of loader is as shown in the figure

3.1. In figure 3.1 translator may be assembler/complier, which generates the object

program and later loaded to the memory by the loader for execution. In figure 3.2 the

translator is specifically an assembler, which generates the object loaded, which becomes

input to the loader. The figure 3.3 shows the role of both loader and linker.

1

Source
Translator

Object

Program Program Loader Object

 program

 ready for

 execution

Memory

Figure 3.1 : The Role of Loader

Source
Assembler

Object

Program Program Loader Object

 program

 ready for

 execution

Memory

Figure 3.2: The Role of Loader with Assembler

2

Source Assembler
Object

Program Linker

Program

Object

program
ready for

Executable execution
Code

Loader

Memory

Figure 3.3 : The Role of both Loader and Linker

3.3 Type of Loaders

The different types of loaders are, absolute loader, bootstrap loader, relocating
loader (relative loader), and, direct linking loader. The following sections discuss the

functions and design of all these types of loaders.

3.3.1 Absolute Loader

The operation of absolute loader is very simple. The object code is loaded to

specified locations in the memory. At the end the loader jumps to the specified address to

begin execution of the loaded program. The role of absolute loader is as shown in the

figure 3.3.1. The advantage of absolute loader is simple and efficient. But the

disadvantages are, the need for programmer to specify the actual address, and, difficult to

use subroutine libraries.

3

1000
Object

 Absolute Program

Loader
Object

program

ready for

execution

2000

Memory

Figure 3.3.1: The Role of Absolute Loader

The algorithm for this type of loader is given here. The object program and, the

object program loaded into memory by the absolute loader are also shown. Each byte of

assembled code is given using its hexadecimal representation in character form. Easy to

read by human beings. Each byte of object code is stored as a single byte. Most machine

store object programs in a binary form, and we must be sure that our file and device

conventions do not cause some of the program bytes to be interpreted as control

characters.

Begin
read Header record
verify program name and length
read first Text record
while record type is <> ‘E’

do begin
{if object code is in character form, convert into internal representation}
move object code to specified location in memory
read next object program record

end
jump to address specified in End
record end

4

5

3.3.2 A Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute loader,

called bootstrap loader is executed. This bootstrap loads the first program to be run by the

computer -- usually an operating system. The bootstrap itself begins at address 0. It loads

the OS starting address 0x80. No header record or control information, the object code is

consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin
X=0x80 (the address of the next memory location to be loaded
Loop

AGETC (and convert it from the ASCII

character code to the value of the hexadecimal digit)
save the value in the high-order 4 bits of

S AGETC
combine the value to form one byte A (A+S)

store the value (in A) to the address in register X

XX+1
End

It uses a subroutine GETC, which is

GETC Aread one character

if A=0x04 then jump to 0x80
if A<48 then GETC
A A-48 (0x30)

if A<10 then return
A A-7
return

3.4 Machine-Dependent Loader Features

Absolute loader is simple and efficient, but the scheme has potential

disadvantages One of the most disadvantage is the programmer has to specify the actual

starting address, from where the program to be loaded. This does not create difficulty, if

one program to run, but not for several programs. Further it is difficult to use subroutine

libraries efficiently.

This needs the design and implementation of a more complex loader. The loader

must provide program relocation and linking, as well as simple loading functions.

6

3.4.1 Relocation

The concept of program relocation is, the execution of the object program using

any part of the available and sufficient memory. The object program is loaded into

memory wherever there is room for it. The actual starting address of the object program

is not known until load time. Relocation provides the efficient sharing of the machine

with larger memory and when several independent programs are to be run together. It

also supports the use of subroutine libraries efficiently. Loaders that allow for program

relocation are called relocating loaders or relative loaders.

3.4.2 Methods for specifying relocation

Use of modification record and, use of relocation bit, are the methods available

for specifying relocation. In the case of modification record, a modification record M is

used in the object program to specify any relocation. In the case of use of relocation bit,

each instruction is associated with one relocation bit and, these relocation bits in a Text

record is gathered into bit masks.

Modification records are used in complex machines and is also called Relocation
and Linkage Directory (RLD) specification. The format of the modification record (M) is

as follows. The object program with relocation by Modification records is also shown

here.

Modification
record col 1: M
col 2-7: relocation address

col 8-9: length (halfbyte) col
10: flag (+/-)

col 11-17: segment name

HCOPY 000000 001077

T000000 1D17202D69202D48101036…4B105D3F2FEC032010

T00001D130F20160100030F200D4B10105D3E2003454F46

T001035 1DB410B400B44075101000…33200857C003B850

T0010531D3B2FEA1340004F0000F1..53C003DF2008B850

T00070073B2FEF4F000005
M00000705+COPY
M00001405+COPY
M00002705+COPY

E000000

7

The relocation bit method is used for simple machines. Relocation bit is 0: no

modification is necessary, and is 1: modification is needed. This is specified in the

columns 10-12 of text record (T), the format of text record, along with relocation bits is
as follows.

Text record

col 1: T
col 2-7: starting address

col 8-9: length (byte) col
10-12: relocation bits

col 13-72: object code

Twelve-bit mask is used in each Text record (col:10-12 – relocation bits), since

each text record contains less than 12 words, unused words are set to 0, and, any value

that is to be modified during relocation must coincide with one of these 3-byte segments.

For absolute loader, there are no relocation bits column 10-69 contains object code. The

object program with relocation by bit mask is as shown below. Observe FFC - means all

ten words are to be modified and, E00 - means first three records are to be modified.

HCOPY 000000 00107A

T0000001EFFC140033481039000036280030300015…3C0003 …

T00001E15E000C00364810610800334C0000…000003000000

T0010391EFFC040030000030…30103FD8105D280030...
T0010570A 8001000364C0000F1001000

T00106119FE0040030E01079…508039DC10792C0036...
E000000

3.5 Program Linking

The Goal of program linking is to resolve the problems with external references
(EXTREF) and external definitions (EXTDEF) from different control sections.

EXTDEF (external definition) - The EXTDEF statement in a control section

names symbols, called external symbols, that are defined in this (present) control section

and may be used by other sections.

ex: EXTDEF BUFFER, BUFFEND, LENGTH

EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used in

this (present) control section and are defined elsewhere.

ex: EXTREF RDREC, WRREC

EXTREF LISTB, ENDB, LISTC, ENDC

8

How to implement EXTDEF and EXTREF

The assembler must include information in the object program that will cause the

loader to insert proper values where they are required – in the form of Define record (D)

and, Refer record(R).

Define record

The format of the Define record (D) along with examples is as shown here.

Col. 1 D

Col. 2-7 Name of external symbol defined in this control section

Col. 8-13 Relative address within this control section (hexadecimal)

Col.14-73 Repeat information in Col. 2-13 for other external symbols

Example records

D LISTA 000040 ENDA 000054

D LISTB 000060 ENDB 000070

Refer record

The format of the Refer record (R) along with examples is as shown here.

Col. 1 R

Col. 2-7 Name of external symbol referred to in this control section

Col. 8-73 Name of other external reference symbols

Example records

R LISTB ENDB LISTC ENDC

R LISTA ENDA LISTC ENDC

R LISTA ENDA LISTB ENDB

Here are the three programs named as PROGA, PROGB and PROGC, which are

separately assembled and each of which consists of a single control section. LISTA,

ENDA in PROGA, LISTB, ENDB in PROGB and LISTC, ENDC in PROGC are

external definitions in each of the control sections. Similarly LISTB, ENDB, LISTC,

ENDC in PROGA, LISTA, ENDA, LISTC, ENDC in PROGB, and LISTA, ENDA,

LISTB, ENDB in PROGC, are external references. These sample programs given here

are used to illustrate linking and relocation. The following figures give the sample

programs and their corresponding object programs. Observe the object programs, which

contain D and R records along with other records.

9

0000 PROGA START 0

 EXTDEF LISTA, ENDA
 EXTREF LISTB, ENDB, LISTC, ENDC

 ………..

 ……….
0020 REF1 LDA LISTA 03201D
0023 REF2 +LDT LISTB+4 77100004

0027 REF3 LDX #ENDA-LISTA 050014

 .

 .

0040 LISTA EQU *

0054 ENDA EQU *

0054 REF4 WORD ENDA-LISTA+LISTC 000014

0057 REF5 WORD ENDC-LISTC-10 FFFFF6
005A REF6 WORD ENDC-LISTC+LISTA-1 00003F

005D REF7 WORD ENDA-LISTA-(ENDB-LISTB) 000014

0060 REF8 WORD LISTB-LISTA FFFFC0

 END REF1

0000 PROGB START 0

 EXTDEF LISTB, ENDB
 EXTREF LISTA, ENDA, LISTC, ENDC

 ………..

 ……….
0036 REF1 +LDA LISTA 03100000
003A REF2 LDT LISTB+4 772027

003D REF3 +LDX #ENDA-LISTA 05100000

 .

 .

0060 LISTB EQU *

0070 ENDB EQU *

0070 REF4 WORD ENDA-LISTA+LISTC 000000

0073 REF5 WORD ENDC-LISTC-10 FFFFF6

0076 REF6 WORD ENDC-LISTC+LISTA-1 FFFFFF

0079 REF7 WORD ENDA-LISTA-(ENDB-LISTB)FFFFF0

007C REF8 WORD LISTB-LISTA 000060

 END

10

0000 PROGC START 0

 EXTDEF LISTC, ENDC
 EXTREF LISTA, ENDA, LISTB, ENDB

 ………..

 ………..
0018 REF1 +LDA LISTA 03100000
001C REF2 +LDT LISTB+4 77100004

0020 REF3 +LDX #ENDA-LISTA 05100000

 .

 .

0030 LISTC EQU *

0042 ENDC EQU *

0042 REF4 WORD ENDA-LISTA+LISTC 000030

0045 REF5 WORD ENDC-LISTC-10 000008
0045 REF6 WORD ENDC-LISTC+LISTA-1 000011

004B REF7 WORD ENDA-LISTA-(ENDB-LISTB)000000

004E REF8 WORD LISTB-LISTA 000000

 END

H PROGA 000000 000063

D LISTA 000040 ENDA 000054

R LISTB ENDB LISTC ENDC

.

.

T 000020 0A 03201D 77100004 050014

.

.
T 000054 0F 000014 FFFF6 00003F 000014
FFFFC0 M000024 05+LISTB
M000054 06+LISTC

M000057 06+ENDC

M000057 06 -LISTC

M00005A06+ENDC

M00005A06 -LISTC
M00005A06+PROGA

M00005D06-ENDB

M00005D06+LISTB

M00006006+LISTB

M00006006-PROGA

E000020

11

H PROGB 000000 00007F

D LISTB 000060 ENDB 000070

R LISTA ENDA LISTC ENDC
.

T 000036 0B 03100000 772027 05100000

.

T 000007 0F 000000 FFFFF6 FFFFFF FFFFF0 000060

M000037 05+LISTA

M00003E 06+ENDA

M00003E 06 -LISTA

M000070 06 +ENDA

M000070 06 -LISTA

M000070 06 +LISTC

M000073 06 +ENDC

M000073 06 -LISTC

M000073 06 +ENDC

M000076 06 -LISTC

M000076 06+LISTA

M000079 06+ENDA

M000079 06 -LISTA

M00007C 06+PROGB

M00007C 06-LISTA

E

H PROGC 000000 000051

D LISTC 000030 ENDC 000042

R LISTA ENDA LISTB ENDB
.

T 000018 0C 03100000 77100004 05100000

.

T 000042 0F 000030 000008 000011 000000 000000

M000019 05+LISTA

M00001D 06+LISTB

M000021 06+ENDA

M000021 06 -LISTA

M000042 06+ENDA

M000042 06 -LISTA

M000042 06+PROGC

M000048 06+LISTA

M00004B 06+ENDA

M00004B 006-LISTA

M00004B 06-ENDB

M00004B 06+LISTB

M00004E 06+LISTB

M00004E 06-LISTA

12

E
The following figure shows these three programs as they might appear in memory

after loading and linking. PROGA has been loaded starting at address 4000, with PROGB

and PROGC immediately following.

13

For example, the value for REF4 in PROGA is located at address 4054 (the

beginning address of PROGA plus 0054, the relative address of REF4 within PROGA).

The following figure shows the details of how this value is computed.

The initial value from the Text record
T0000540F000014FFFFF600003F000014FFFFC0 is 000014. To this is added

the address assigned to LISTC, which is 4112 (the beginning address of PROGC plus 30).
The result is 004126.

That is REF4 in PROGA is ENDA-LISTA+LISTC=4054-4040+4112=4126.

Similarly the load address for symbols LISTA: PROGA+0040=4040, LISTB:

PROGB+0060=40C3 and LISTC: PROGC+0030=4112

Keeping these details work through the details of other references and values of

these references are the same in each of the three programs.

14

3.6 Algorithm and Data structures for a Linking Loader

The algorithm for a linking loader is considerably more complicated than the

absolute loader program, which is already given. The concept given in the program

linking section is used for developing the algorithm for linking loader. The modification

records are used for relocation so that the linking and relocation functions are performed

using the same mechanism.

Linking Loader uses two-passes logic. ESTAB (external symbol table) is the main

data structure for a linking loader.

Pass 1: Assign addresses to all external symbols

Pass 2: Perform the actual loading, relocation, and linking

ESTAB - ESTAB for the example (refer three programs PROGA PROGB and

PROGC) given is as shown below. The ESTAB has four entries in it; they are name of

the control section, the symbol appearing in the control section, its address and length of

the control section.

Control section Symbol Address Length

PROGA 4000 63

 LISTA 4040

 ENDA 4054

PROGB 4063 7F

 LISTB 40C3

 ENDB 40D3

PROGC

40E2 51

 LISTC 4112

 ENDC 4124

3.6.1 Program Logic for Pass 1

Pass 1 assign addresses to all external symbols. The variables & Data structures

used during pass 1 are, PROGADDR (program load address) from OS, CSADDR

15

(control section address), CSLTH (control section length) and ESTAB. The pass 1

processes the Define Record. The algorithm for Pass 1 of Linking Loader is given below.

3.6.2 Program Logic for Pass 2

Pass 2 of linking loader perform the actual loading, relocation, and linking. It uses

modification record and lookup the symbol in ESTAB to obtain its addres. Finally it
uses end record of a main program to obtain transfer address, which is a starting
address needed for the execution of the program. The pass 2 process Text record and
Modification record of the object programs. The algorithm for Pass 2 of Linking Loader
is given below.

16

3.6.3 Improve Efficiency, How?

The question here is can we improve the efficiency of the linking loader. Also

observe that, even though we have defined Refer record (R), we haven’t made use of it.
The efficiency can be improved by the use of local searching instead of multiple searches
of ESTAB for the same symbol. For implementing this we assign a reference number to
each external symbol in the Refer record. Then this reference number is used in
Modification records instead of external symbols. 01 is assigned to control section name,

and other numbers for external reference symbols.

The object programs for PROGA, PROGB and PROGC are shown below, with

above modification to Refer record (Observe R records).

17

18

Symbol and Addresses in PROGA, PROGB and PROGC are as shown below.
These are the entries of ESTAB. The main advantage of reference number mechanism is

that it avoids multiple searches of ESTAB for the same symbol during the loading of a

control section

Ref No. Symbol Address

1 PROGA 4000

2 LISTB 40C3

3 ENDB 40D3

4 LISTC 4112

5 ENDC 4124

19

Ref No. Symbol Address

1 PROGB 4063

2 LISTA 4040

3 ENDA 4054

4 LISTC 4112

5 ENDC 4124

Ref No. Symbol Address

1 PROGC 4063

2 LISTA 4040

3 ENDA 4054

4 LISTB 40C3

5 ENDB 40D3

3.7 Machine-independent Loader Features

Here we discuss some loader features that are not directly related to machine

architecture and design. Automatic Library Search and Loader Options are such
Machine-independent Loader Features.

3.7.1 Automatic Library Search

This feature allows a programmer to use standard subroutines without explicitly

including them in the program to be loaded. The routines are automatically retrieved from

a library as they are needed during linking. This allows programmer to use subroutines

from one or more libraries. The subroutines called by the program being loaded are

automatically fetched from the library, linked with the main program and loaded. The

loader searches the library or libraries specified for routines that contain the definitions of

these symbols in the main program.

20

3.7.2 Loader Options

Loader options allow the user to specify options that modify the standard

processing. The options may be specified in three different ways. They are, specified

using a command language, specified as a part of job control language that is processed

by the operating system, and an be specified using loader control statements in the source

program.

Here are the some examples of how option can be specified.

INCLUDE program-name (library-name) - read the designated object program

from a library

DELETE csect-name – delete the named control section from the set pf programs

being loaded

CHANGE name1, name2 - external symbol name1 to be changed to name2

wherever it appears in the object programs

LIBRARY MYLIB – search MYLIB library before standard libraries

NOCALL STDDEV, PLOT, CORREL – no loading and linking of unneeded

routines

Here is one more example giving, how commands can be specified as a part of

object file, and the respective changes are carried out by the loader.

LIBRARY UTLIB

INCLUDE READ (UTLIB)

INCLUDE WRITE (UTLIB)

DELETE RDREC, WRREC

CHANGE RDREC, READ

CHANGE WRREC, WRITE

NOCALL SQRT, PLOT

The commands are, use UTLIB (say utility library), include READ and WRITE

control sections from the library, delete the control sections RDREC and WRREC from

the load, the change command causes all external references to the symbol RDREC to be

changed to the symbol READ, similarly references to WRREC is changed to WRITE,

finally, no call to the functions SQRT, PLOT, if they are used in the program.

3.8 Loader Design Options

There are some common alternatives for organizing the loading functions,

including relocation and linking. Linking Loaders – Perform all linking and relocation at

load time. The Other Alternatives are Linkage editors, which perform linking prior to
load time and, Dynamic linking, in which linking function is performed at execution time

21

3.8.1 Linking Loaders

Library

Object
Program(s)

Linking loader

Memory

The above diagram shows the processing of an object program using Linking

Loader. The source program is first assembled or compiled, producing an object program.
A linking loader performs all linking and loading operations, and loads the program into

memory for execution.

3.8.2 Linkage Editors

The figure below shows the processing of an object program using Linkage editor.

A linkage editor produces a linked version of the program – often called a load module or

an executable image – which is written to a file or library for later execution. The linked

program produced is generally in a form that is suitable for processing by a relocating

loader.

Some useful functions of Linkage editor are, an absolute object program can be

created, if starting address is already known. New versions of the library can be included

without changing the source program. Linkage editors can also be used to build packages

of subroutines or other control sections that are generally used together. Linkage editors

often allow the user to specify that external references are not to be resolved by automatic

library search – linking will be done later by linking loader – linkage editor + linking

loader – savings in space

22

Object
Program(s)

Library Linkage Editor

Linked

program

Relocating loader

Memory

3.8.3 Dynamic Linking

The scheme that postpones the linking functions until execution. A subroutine is

loaded and linked to the rest of the program when it is first called – usually called

dynamic linking, dynamic loading or load on call. The advantages of dynamic linking are,

it allow several executing programs to share one copy of a subroutine or library. In an

object oriented system, dynamic linking makes it possible for one object to be shared by

several programs. Dynamic linking provides the ability to load the routines only when

(and if) they are needed. The actual loading and linking can be accomplished using

operating system service request.

23

3.8.4 Bootstrap Loaders

If the question, how is the loader itself loaded into the memory ? is asked, then the

answer is, when computer is started – with no program in memory, a program present in

ROM (absolute address) can be made executed – may be OS itself or A Bootstrap loader,

which in turn loads OS and prepares it for execution. The first record (or records) is

generally referred to as a bootstrap loader – makes the OS to be loaded. Such a loader is

added to the beginning of all object programs that are to be loaded into an empty and idle

system.

3.9 Implementation Examples

This section contains brief description of loaders and linkers for actual computers.

They are, MS-DOS Linker - Pentium architecture, SunOS Linkers - SPARC architecture,

and, Cray MPP Linkers – T3E architecture.

3.9.1 MS-DOS Linker

This explains some of the features of Microsoft MS-DOS linker, which is a linker

for Pentium and other x86 systems. Most MS-DOS compilers and assemblers (MASM)

produce object modules, and they are stored in .OBJ files. MS-DOS LINK is a linkage

editor that combines one or more object modules to produce a complete executable

program - .EXE file; this file is later executed for results.

The following table illustrates the typical MS-DOS object module

Record Types Description

THEADR Translator Header

TYPDEF,PUBDEF, EXTDEF External symbols and references

LNAMES, SEGDEF, GRPDEF Segment definition and grouping

LEDATA, LIDATA Translated instructions and data
FIXUPP Relocation and linking information

MODEND End of object module

THEADR specifies the name of the object module. MODEND specifies the end of

the module. PUBDEF contains list of the external symbols (called public names).

EXTDEF contains list of external symbols referred in this module, but defined elsewhere.

TYPDEF the data types are defined here. SEGDEF describes segments in the object

module (includes name, length, and alignment). GRPDEF includes how segments are

combined into groups. LNAMES contains all segment and class names. LEDATA

contains translated instructions and data. LIDATA has above in repeating pattern. Finally,

FIXUPP is used to resolve external references.

24

3.9.2 SunOS Linkers

SunOS Linkers are developed for SPARC systems. SunOS provides two different

linkers – link-editor and run-time linker.

Link-editor is invoked in the process of assembling or compiling a program –

produces a single output module – one of the following types

A relocatable object module – suitable for further link-editing

A static executable – with all symbolic references bound and ready to run

A dynamic executable – in which some symbolic references may need to be bound at run

time

A shared object – which provides services that can be, bound at run time to one ore more

dynamic executables

An object module contains one or more sections – representing instructions and

data area from the source program, relocation and linking information, external symbol

table.

Run-time linker uses dynamic linking approach. Run-time linker binds dynamic

executables and shared objects at execution time. Performs relocation and linking

operations to prepare the program for execution.

3.9.3 Cray MPP Linker

Cray MPP (massively parallel processing) Linker is developed for Cray T3E

systems. A T3E system contains large number of parallel processing elements (PEs) –

Each PE has local memory and has access to remote memory (memory of other PEs). The

processing is divided among PEs - contains shared data and private data. The loaded

program gets copy of the executable code, its private data and its portion of the shared

data. The MPP linker organizes blocks containing executable code, private data and

shared data. The linker then writes an executable file that contains the relocated and

linked blocks. The executable file also specifies the number of PEs required and other

control information. The linker can create an executable file that is targeted for a fixed

number of PEs, or one that allows the partition size to be chosen at run time. Latter type

is called plastic executable.

The Structure of a Compiler

A compiler performs two major
tasks:

3. Analysis of the source

program being compiled

4. Synthesis of a target program
Almost all modern compilers are

syntax-directed: The compilation
process is driven by the syntactic
structure of the source program.

A parser builds semantic structure
out of tokens, the elementary
symbols of programming
language syntax. Recognition of
syntactic structure is a major part
of the analysis task.

CS 536 Spring 2008

© 29

If an IR is generated, it then

serves as input to a code

generator component that
produces the desired machine-
language program. The IR may
optionally be transformed by an

optimizer so that a more efficient
program may be generated.

CS 536 Spring 2008

© 31

Semantic analysis examines the

meaning (semantics) of the
program. Semantic analysis plays
a dual role.
It finishes the analysis task by
performing a variety of
correctness checks (for example,
enforcing type and scope rules).
Semantic analysis also begins the
synthesis phase.

The synthesis phase may
translate source programs into
some intermediate representation
(IR) or it may directly generate
target code.

CS 536 Spring 2008

© 30

Source Abstract

 Syntax

Program Tokens

Tree

Scanner Parser

Type Checker

(Character (AST)

Stream)
Decorated

 AST

 Translator

 Intermediate

 Representation

 Symbol Tables
(IR)

 Optimizer

 IR

 Code

 Generator

 Target Machine

 Code

The Structure of a Syntax-Directed Compiler

CS 536 Spring 2008
©

32

Scanner

The scanner reads the source
program, character by character.
It groups individual characters into
tokens (identifiers, integers,
reserved words, delimiters, and so
on). When necessary, the actual
character string comprising the
token is also passed along for use
by the semantic phases.

The scanner:

3. Puts the program into a compact

and uniform format (a stream of
tokens).

4. Eliminates unneeded information
(such as comments).

5. Sometimes enters preliminary
information into symbol tables (for

example, to register the presence
of a particular label or identifier).

 Optionally formats and lists the
source program

Building tokens is driven by
token descriptions defined
using regular expression
notation.
Regular expressions are a formal
notation able to describe the
tokens used in modern
programming languages.
Moreover, they can drive the
automatic generation of
working scanners given only a
specification of the tokens.
Scanner generators (like Lex,
Flex and Jlex) are valuable
compiler-building tools.

CS 536 Spring 2008

© 33 CS 536 Spring 2008
© 34

Parser

Given a syntax specification (as a
context-free grammar, CFG), the
parser reads tokens and groups
them into language structures.

Parsers are typically created
from a CFG using a parser
generator (like Yacc, Bison or
Java CUP).
The parser verifies correct syntax
and may issue a syntax error
message.
As syntactic structure is
recognized, the parser usually
builds an abstract syntax tree
(AST), a concise representation
of program structure, which
guides semantic processing.

Type Checker

(Semantic Analysis)

The type checker checks the static

semantics of each AST node. It
verifies that the construct is legal and
meaningful (that all identifiers
involved are declared, that types are
correct, and so on).
If the construct is semantically
correct, the type checker “decorates”
the AST node, adding type or
symbol table information to it. If a
semantic error is discovered, a
suitable error message is issued.

Type checking is purely dependent
on the semantic rules of the source
language. It is independent of the
compiler’s target machine.

CS 536 Spring 2008

© 35 CS 536 Spring 2008
© 36

Translator

(Program Synthesis)

If an AST node is semantically
correct, it can be translated.
Translation involves capturing
the run-time “meaning” of a
construct.
For example, an AST for a while
loop contains two subtrees, one
for the loop’s control expression,
and the other for the loop’s body.

Nothing in the AST shows that a
while loop loops! This “meaning”
is captured when a while loop’s
AST is translated. In the IR, the
notion of testing the value of the
loop control expression,

and conditionally executing the
loop body becomes explicit.
The translator is dictated by the
semantics of the source language.
Little of the nature of the target
machine need be made evident.
Detailed information on the nature
of the target machine (operations
available, addressing, register
characteristics, etc.) is reserved
for the code generation phase.

In simple non-optimizing
compilers (like our class project),
the translator generates target
code directly, without using an
IR.
More elaborate compilers may
first generate a high-level IR

CS 536 Spring 2008

© 37 CS 536 Spring 2008
© 38

(that is source language oriented)
and then subsequently translate it
into a low-level IR (that is target
machine oriented). This approach
allows a cleaner separation of
source and target dependencies.

Optimizer

The IR code generated by the

translator is analyzed and

transformed into functionally

equivalent but improved IR code

by the optimizer.
The term optimization is

misleading: we don’t always

produce the best possible

translation of a program, even

after optimization by the best of

compilers.
Why?
Some optimizations are

impossible to do in all

circumstances because they

involve an undecidable problem.

Eliminating unreachable (“dead”)

code is, in general, impossible.

CS 536 Spring 2008

© 39 CS 536 Spring 2008
© 40

Other optimizations are too
expensive to do in all cases. These
involve NP-complete problems,
believed to be inherently
exponential. Assigning registers to
variables is an example of an NP-
complete problem.

Optimization can be complex; it
may involve numerous subphases,
which may need to be applied
more than once.
Optimizations may be turned off to
speed translation. Nonetheless, a
well designed optimizer can
significantly speed program
execution by simplifying, moving or
eliminating unneeded
computations.

Code Generator

IR code produced by the
translator is mapped into target
machine code by the code
generator. This phase uses
detailed information about the
target machine and includes
machine-specific optimizations
like register allocation and code
scheduling.
Code generators can be quite
complex since good target code
requires consideration of many
special cases.
Automatic generation of code
generators is possible. The basic
approach is to match a low-level
IR to target instruction templates,
choosing

CS 536 Spring 2008

© 41 CS 536 Spring 2008
© 42

instructions which best match
each IR instruction.
A well-known compiler using
automatic code generation
techniques is the GNU C
compiler. GCC is a heavily
optimizing compiler with machine
description files for over ten
popular computer architectures,
and at least two language front
ends (C and C++).

Symbol Tables

A symbol table allows
information to be associated
with identifiers and shared
among compiler phases. Each
time an identifier is used, a
symbol table provides access to
the information collected about
the identifier when its
declaration was processed.

CS 536 Spring 2008

© 43 CS 536 Spring 2008
© 44

Example

Our source language will be

CSX, a blend of C, C++ and

Java.
Our target language will be the

Java JVM, using the Jasmin

assembler.
• Our source line is

a = bb+abs(c-7);
this is a sequence of ASCII characters

in a text file.
• The scanner groups characters into

tokens, the basic units of a program.
a = bb+abs(c-7);

After scanning, we have the following
token sequence:
Id

a

 Asg Id
bb

 Plus Id
abs

 Lparen Id
c

Minus

IntLiteral
7
 Rparen Semi

• The parser groups these tokens into

language constructs (expressions,
statements, declarations, etc.)
represented in tree form:

Asg

Id
a Plus

Idbb Call

Idabs Minus

Idc IntLiteral7

(What happened to the

parentheses and the

semicolon?)

CS 536 Spring 2008

© 45 CS 536 Spring 2008
© 46

• The type checker resolves types and binds declarations within scopes:

Asg
int

Ida
intloc

Plus
int

int

Idbb
intloc

 Call
method int

Idabs Minus
int

Idc
intloc

 IntLiteral7

; compute bb+abs(c-7)

1 ; store result into
local 1(a)

• Finally, JVM code is generated for each node in the tree (leaves first, then roots):

iload 3 ; push local 3 (bb)
iload 2 ; push local 2 (c)
ldc 7 ; Push literal 7
isub ; compute c-7
invokestatic java/lang/Math/ abs(I)I
iadd

Interpreters

There are two different kinds

of interpreters that support

execution of programs,

machine interpreters and

language interpreters.

Machine Interpreters

Machine interpreters simulate

the execution of a program

compiled for a particular

machine architecture. Java uses

a bytecode interpreter to

simulate the effects of programs

compiled for the JVM. Programs

like SPIM simulate the execution

of a MIPS program on a non-

MIPS computer.

Language Interpreters

Language interpreters simulate the

effect of executing a program without

compiling it to any particular

instruction set (real or virtual). Instead

some IR form (perhaps an AST) is used

to drive execution.
Interpreters provide a number of

capabilities not found in compilers:
• Programs may be modified as execution

proceeds. This provides a
straightforward interactive debugging
capability. Depending on program
structure, program modifications may
require reparsing or repeated semantic
analysis. In Python, for example, any
string variable may be interpreted as a
Python expression or statement and
executed.

CS 536 Spring 2008

© 49 CS 536 Spring 2008
© 50

• Interpreters readily support languages in

which the type of a variable denotes may
change dynamically (e.g., Python or
Scheme). The user program is
continuously reexamined as execution
proceeds, so symbols need not have a
fixed type. Fluid bindings are much more
troublesome for compilers, since
dynamic changes in the type of a symbol
make direct translation into machine
code difficult or impossible.

• Interpreters provide better diagnostics.
Source text analysis is intermixed with
program execution, so especially good
diagnostics are available, along with
interactive debugging.

• Interpreters support machine
independence. All operations are
performed within the interpreter. To
move to a new machine, we just
recompile the interpreter.

However, interpretation can

involve large overheads:
• As execution proceeds, program text is

continuously reexamined, with bindings,
types, and operations sometimes
recomputed at each use. For very
dynamic languages this can represent a
100:1 (or worse) factor in execution
speed over compiled code. For more
static languages (such as C or Java),
the speed degradation is closer to 10:1.

• Startup time for small programs is
slowed, since the interpreter must be
load and the program partially
recompiled before execution begins.

CS 536 Spring 2008

© 51 CS 536 Spring 2008
© 52

• Substantial space overhead may e involved. The interpreter and all

support routines must usually be kept available. Source text is often

not as compact as if it were compiled. This size penalty may lead to

restrictions in the size of programs. Programs beyond these built-in

limits cannot be handled by the interpreter.
Of course, many languages (including, C, C++ and Java)

have both interpreters (for debugging and program

development) and compilers (for production work).

UNIT 5

5. Introduction:
–

C
o
m
p
u
t
i
n
g

I
n
v

o
l
v
e

t
w
o

m
a
i
n

a
c
t
i
v
i
t
i
e
s
:

0

P
r
o
g
r
a
m

D
e
v
e
l

o
p
m
e
n
t

0 Use of application software

– Programs that help us for developing and using other programs, are

called software tools, which perform various house
keeping task involved in program development & application usage.

0 Definition: Software Tool is a system program which

– 1. Interface program with the entity generating its input data, or

– 2. Interfaces the results of a program with the entity(user) consuming

them.

0 The entity generating the data or consuming the results may be
– A program or
– A user.

Example: File rewriting utility
0 It organizes the data in file to make it suitable for processing by a

program. Eg. Converting pipe delimited file to excel file.
• For this, it may perform:

– Blocking/De-Blocking,
– Padding / Truncation,
– Sorting, etc.

DEVELOPMENT

b) Program design, coding and documentation

c) Preparation of program to machine readable form.
d) Program translation, linking & loading.
e) Program testing & debugging.
f) Performance Tuning.

g) Reformatting data and/or results of a program to suit other programs.

4. In this topic we will cover following points in detail:
 Program Design & Coding
 Program Entry & Editing
 Program Testing & Debugging
 Enhancement of Program Performance.
 Program Documentation
 Design of Software Tools

0 Program Pre-Processing
0 Program Instrumentation
0 Program Interpretation
0 Program Generation.

T

h

e

s

e

t

o

o

l

s

a

r

e

t

e

x

t

e

d

i

t

o

r

s or more sophisticated programs with text editors as front ends.
5. Two modes of Editor Function:

– Command Mode
– Data Mode

0 Command Mode: Accepts user commands

specifying function to be performed. 0 Data Mode:

In this user “keys in” text to be added to file.
0 What is the problem here?

– Failure to recognize current mode.
– Results to mixing up of command and data mode.

0 Solution / Remedy: Two Approaches
– Approach 1: Quick Exit

 Quick exit from data mode through ESC key.
0 Eg: Vi Editor.

– Approach 2: Screen Mode
0 Also called “what u see is what u get” mode.
0 Cursor works for command mode.
0 And key stroke is the data mode.
0 Special key combination signify commands.

0 Benefit: Need not to indicate that data input ends. 0
Eg: Turbo C

PROGRAM EDITING AND TESTING

4. Steps for program testing and debugging:

– 1. Selection of test data for programs.
– 2. Analysis of test results to detect errors.
– 3. Debugging.

0 S

o

f

t

w

a

r

e

T

o

o

l

s

a

s

s

i

s

t

i

n

g

f

o

r

t

esting and debugging to programmers may of following

forms:
– 1. Test Data Generators
– 2. Automated Test Drivers
– 3. Debug Monitors
– 4. Source Code Control System

Test Data Generators:
0 Help user selecting test data for programs.
0 Ensure thoroughly testing of programs.
Debug Monitors:

0 Helps us in obtaining information for localization of errors.
Source Code Control System:

0 Helps keep track of modifications in the source code.

tomated Test Drivers:
0
 Help in regression testing.

0
0

0

After every modification, program correctness is verified by subjecting it to standard set of tests.
Regression Testing:
0 Many sets are prepared as test data and then,
0 Given as input to programs.

0 The driver then selects one set of test data at a time and organizes execution of program on that data.
Problems with Automated Test Drivers:

0 1. Wastage of testing efforts on in-feasible paths. i.e Path which is never followed during execution . ◦ 2. Testing complex

loop structures. Remedy/Solution: Manual Testing

Conclusion:

 Automated testing can be used for first batch of errors at
Testing:--

0 Execution Path:
0 Used by test data selection

0 It is a sequence of program statements visited during an execution.
0 For testing, program is viewed as set of execution path.

0 Test data generator determines conditions which must be satisfied by program input for flow of control along the specific execution

path.
0 Eg:

x:= sqrt(y) + 2.5; if x>z

then a:=a+1.0; else

 --
0 Execution path is traversed only if x>z.

0 To test this, test data generator must select a value for y and z such that x>z.

0 For eg: y = z
2
, then only z value is to be selected.

0
0 1
0 Trace off: Trace is disabled.

0 Display <list>: Values of variable in list are written in debug file.

 Debugging:-

0 To improve effectiveness of debugging, get option of “Dynamically specify trace & dump”.

0

Who would provide this solution?

0 0 Ans: Compiler and Interpreters.

How?

 0 By setting breakpoints (stop)

 0 Change variables during debugging.

0
0 Set & remove breakpoints dynamically during execution.

Eg: Break Points & Dump Facilities

0
0 (a) stop on <list of labels> (b) dump at <label> <list of variables>

Eg: Interactive Debugging Facilities:

 0 This commands can be issued when program reaches breakpoints.

 0 Display <list of variables>

 0 Displays values of variables.

 0 Set <variable> = <exp>

 0 Assign value.

 0 Resume:

 0 Resumes execution.

 0 Run:

 0 Restarts execution.

0

Debug Monitors:

 0 Debugging is provided by debug monitor software.

 0 Executes program that is being debugging under its own control.

 0 Provides execution efficiency.

 0 Performs dynamically specified debugging actions.

 0 Can be made language independent.

 0 Eg: DDT (Dynamic Debugging Techniques) of DEC-10 language.

EDITORS
0
0

1. Line
2. Stream

0
0
0

0
0
0

3. Screen
4. Word Processor
5. Structure Editor

Line & stream editors typically maintain multiple representation of text.
Display Form shows text of sequence of lines.
Internal Form performs edit operation.

LINE EDITORS

0
0

0

Scope of edit operation in line editor is limited to line of
text. Line is designated either
0 Positional (sr. no) or
0 Contextually (context symbol)
Advantage: Primary Simplicity.

STREAM EDITORS

0

0

0
0

0

Views entire text as a stream of characters.

Permit edit operation to cross line boundaries.

Support character, line and context oriented
commands. Indicated by
0 Position of text pointer or
0 Search commands.
Eg: Dos File

SCREEN EDITORS

0
0
0
0

0

0
0

Doesn‟t display text in the manner in which it would appear for
printing. Uses “what u see is what u get” principle.
Displays screen full of text at a time.
Cursor positioning & editing is supported.

Effect of edit operation is visible on the screen same moment.

Useful during formatting of documents to be printed.
Eg: NotePad, WordPad.

STRUCTURE EDITORS

0
0
0

0

0
0
0

Basically document editors
Produce well formatted hard copy output.
Features:

0 Copy / Paste / Cut
0 Find / Replace
0 Spell Check

Wide spread among
0 Authors
0 Office Personnel
0 Computer Professionals

Eg: Word Start, MS word

0
0
0

0

0
0

Incorporates an awareness of structure of document.
Useful in browsing through document.
Creation & Modification is very easy.

Editing requirements are specified using structures.

Structure editors are also called syntax directed editors.
Eg: VB, NetBeans, EditPlus

DEBUG MONITORS

Provide Following facilities:-

0

0
0

0
0
0

0

Setting breakpoints in program

Initializing debug conversation when control reaches breakpoint

Displaying values of variables.

Testing user defined assertions & predicts involving program variables.

Debug monitor functions can be easily implemented in an interpreter.

But interpreters incur considerable execution time penalties. Hence, debug monitors rely on instrumentation of
program. User must compile program under debug option.

To disable debug option for particular statements: no_op<statement number>
Compiler generates table (var nm, address).
Set break points with <si_Instruction><code>

Program executes on CPU until si_instruction is reached.

0
0

Code produces interrupt code.
Instead of <si_instruction> we can use
0 BC ANY
0 DEBUG_MON

0 Now debug monitor gains control & opens a debug conversation.

PROGRAM ENVIRONMENT

0

0

0

0

0

0
0

0

Debug Assertion: is a relation between values of program variables.

Assertion can be associated by program statement.

Debug monitors verifies assertion when execution reaches the statements.

If values matches, program execution continues otherwise, debug conversation opens.

Debug assertion eliminates need to produce voluminous information.

Is a system software.
Provides integral facilities for

0 Program creation
0 Editing
0 Execution
0 Testing
0 Debugging

Components
1. Syntax directed editor
2. Language Processor

0 Compiler
0 Interpreter

0
0

0
0
0

0
0
0

0
0

0 Both
3. Debug monitor
4. Dialog monitor
Components are accessed through dialog monitor.
Syntax directed editor incorporates front end.

Editor performs syntax analysis and construct IR giving abstract syntax tree.
Compiler and debug monitor share IR.
Thus, program execution or interpretation starts then.

In between, any time during execution, programmer can interrupt execution, resume program and restart execution. Debug
monitors provide easy accessibility to all functions.
Also allow,
0 Generation of program
0 Testing functions
0 Partial compilation and program execution.
Errors are indicated if encountered.
Also permits
0 reversible execution &
0 step back execution

USER INTERFACE

0
0

0

Role: Simplifying interaction of a user with an application. Two
aspects:
0 1. Issuing Commands.
0 2. Exchange of Data.
Requirement of UI?
0 Before requirement was small & hence small applications.

0 But now, applications have become so large that one programmer‟s team do not know any thing about other

programmer‟s team working on same application.

0 UI will keep track of information of functionalities & educating users for those applications.

0

0

0

Two components:
0 1.Dialog Manager
0 2.Presentation Manager
1. Dialog Manager:
0 Manages conversation between user & application.
0 Prompts user for command.
0 Transmits command to application.
2. Presentation Manager:

0 Displays data produced by the application in appropriate manner on screen.

