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Matrices - Introduction 

Matrix algebra has at least two advantages: 

•Reduces complicated systems of equations to simple 

expressions 

•Adaptable to systematic method of mathematical treatment 

and well suited to computers 

Definition: 

A matrix is a set or group of numbers arranged in a square or 

rectangular array enclosed by two brackets 
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Matrices - Introduction 

Properties: 

•A specified number of rows and a specified number of 

columns 

•Two numbers (rows x columns) describe the dimensions 

or size of the matrix. 

Examples:  

3x3 matrix 

2x4 matrix 
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Matrices - Introduction 

A matrix is denoted by a bold capital letter and the elements 

within the matrix are denoted by lower case letters  

e.g. matrix [A] with elements aij 
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TYPES OF MATRICES 

1. Column matrix or vector: 

The number of rows may be any integer but the number of 

columns is always 1 
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Matrices - Introduction 

TYPES OF MATRICES 

2. Row matrix or vector 

Any number of columns but only one row 
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TYPES OF MATRICES 

3. Rectangular matrix 

Contains more than one element and number of rows is not 

equal to the number of columns 
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TYPES OF MATRICES 

4. Square matrix 

The number of rows is equal to the number of columns 

(a square matrix   A   has an order of m) 
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The principal or main diagonal of a square matrix is composed of all 

elements aij for which i=j 
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TYPES OF MATRICES 

5. Diagonal matrix 

A square matrix where all the elements are zero except those on 

the main diagonal 
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TYPES OF MATRICES 

6. Unit or Identity matrix - I 

A diagonal matrix with ones on the main diagonal 
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TYPES OF MATRICES 

7. Null (zero) matrix - 0 

All elements in the matrix are zero 
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TYPES OF MATRICES 

8. Triangular matrix 

A square matrix whose elements above or below the main 

diagonal are all zero 
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TYPES OF MATRICES 

8a. Upper triangular matrix 

A square matrix whose elements below the main 

diagonal are all zero 

i.e. aij = 0 for all i > j 
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TYPES OF MATRICES 

A square matrix whose elements above the main diagonal are all 

zero 

 

8b. Lower triangular matrix 

i.e. aij = 0 for all i < j 
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Matrices – Introduction 
TYPES OF MATRICES 

9. Scalar matrix 

A diagonal matrix whose main diagonal elements are 

equal to the same scalar 

A scalar is defined as a single number or constant 
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Matrices - Operations 

EQUALITY OF MATRICES 

Two matrices are said to be equal only when all 

corresponding elements are equal 

Therefore their size or dimensions are equal as well 
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Matrices - Operations 
Some properties of equality: 

•IIf A = B, then B = A for all A and B 

•IIf A = B, and B = C, then A = C for all A, B and C 
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ADDITION AND SUBTRACTION OF MATRICES 

The sum or difference of two matrices, A and B of the same 

size yields a matrix C of the same size 

ijijij bac 

Matrices of different sizes cannot be added or subtracted 



Matrices - Operations 

Commutative Law: 

A + B = B + A 

 

Associative Law: 

A + (B + C) = (A + B) + C = A + B + C 
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A + 0 = 0 + A = A 

A + (-A) = 0 (where –A is the matrix composed of –aij as elements) 
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SCALAR MULTIPLICATION OF MATRICES 

Matrices can be multiplied by a scalar (constant or single 

element) 

Let k be a scalar quantity; then 

kA = Ak 

Ex.  If k=4 and  
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Properties: 

• k (A + B) = kA + kB 

• (k + g)A = kA + gA 

• k(AB) = (kA)B = A(k)B 

• k(gA) = (kg)A 
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MULTIPLICATION OF MATRICES 

The product of two matrices is another matrix 

Two matrices A and B must be conformable for multiplication to 

be possible 

i.e. the number of columns of A must equal the number of rows 

of B 

Example. 

A     x     B   =      C 

(1x3)     (3x1)      (1x1) 



Matrices - Operations 
   B   x    A      =     Not possible! 

(2x1)   (4x2) 

 

  A    x    B         =    Not possible! 

(6x2)    (6x3) 

 

Example 

 A      x       B        =    C 

(2x3)        (3x2)         (2x2) 
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Matrices - Operations 
Assuming that matrices A, B and C are conformable for 

the operations indicated, the following are true: 

1. AI = IA = A 

2. A(BC) = (AB)C = ABC   -    (associative law) 

3. A(B+C) = AB + AC   -   (first distributive law) 

4. (A+B)C  =  AC  + BC  -  (second distributive law) 

Caution! 

1. AB not generally equal to BA, BA may not be conformable 

2. If AB = 0, neither A nor B necessarily = 0 

3. If AB = AC, B not necessarily = C 



Matrices - Operations 
AB not generally equal to BA, BA may not be conformable 
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If AB = 0, neither A nor B necessarily = 0 
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TRANSPOSE OF A MATRIX 

If : 











135

742
3

2AA
2x3 



















17

34

52
3

2

TT AA

Then transpose of A, denoted AT is: 
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To transpose: 

Interchange rows and columns 

The dimensions of AT are the reverse of the dimensions of A 
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Properties of transposed matrices: 

1. (A+B)T = AT + BT 

2. (AB)T = BT AT 

3. (kA)T = kAT 

4. (AT)T = A 
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1. (A+B)T = AT + BT 
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(AB)T = BT AT 
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SYMMETRIC MATRICES 

A Square matrix is symmetric if it is equal to its 

transpose: 

A = AT 

 





















db

ba
A

db

ba
A

T



Matrices - Operations 

When the original matrix is square, transposition does not 

affect the elements of the main diagonal 
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The identity matrix, I, a diagonal matrix D, and a scalar matrix, K, 

are equal to their transpose since the diagonal is unaffected. 
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INVERSE OF A MATRIX 

Consider a scalar k.  The inverse is the reciprocal or division of 1 

by the scalar. 

Example: 

k=7 the inverse of k or k-1 = 1/k = 1/7 

Division of matrices is not defined since there may be AB = AC 

while B = C 

Instead matrix inversion is used.   

The inverse of a square matrix, A, if it exists, is the unique matrix 

A-1 where: 

AA-1  = A-1 A = I 
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Example: 
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Properties of the inverse: 
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A square matrix that has an inverse is called a nonsingular matrix 

A matrix that does not have an inverse is called a singular matrix 

Square matrices have inverses except when the determinant is zero 

When the determinant of a matrix is zero the matrix is singular 



Matrices - Operations 

DETERMINANT OF A MATRIX 

To compute the inverse of a matrix, the determinant is required 

Each square matrix A has a unit scalar value called the 

determinant of A, denoted by det A or |A| 
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If A = [A] is a single element (1x1), then the determinant is 

defined as the value of the element 

Then |A| =det A =  a11 

If A is (n x n), its determinant may be defined in terms of  order 

(n-1) or less. 
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MINORS 

If A is an n x n matrix and one row and one column are deleted, 

the resulting matrix is an (n-1) x (n-1) submatrix of A.   

The determinant of such a submatrix is called a minor of A and 

is designated by mij , where i and j correspond to the deleted 

 row and column, respectively. 

mij is the minor of the element aij in A. 
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Delete first row and column from  A .  
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Therefore the minor of a12 is: 

And the minor for a13 is: 
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COFACTORS 

The cofactor Cij of an element aij is defined as: 
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When the sum of a row number i and column j is even, cij = mij and 

when i+j is odd, cij =-mij 
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21

12

1111

11

11

)1()3,1(

)1()2,1(

)1()1,1(

mmjic

mmjic

mmjic















Matrices - Operations 

DETERMINANTS CONTINUED 

The determinant of an n x n matrix A can now be defined as 

nncacacaAA 1112121111det  

The determinant of A is therefore the sum of the products of the 

elements of the first row of A and their corresponding cofactors. 

(It is possible to define |A| in terms of any other row or column 

but for simplicity, the first row only is used) 



Matrices - Operations 

Therefore the 2 x 2 matrix : 











2221

1211

aa

aa
A

Has cofactors : 

22221111 aamc 

And: 
21211212 aamc 

And the determinant of A is:  

2112221112121111 aaaacacaA 



Matrices - Operations 

Example 1: 











21

13
A

5)1)(1()2)(3( A



Matrices - Operations 
For a 3 x 3 matrix: 



















333231

232221

131211

aaa

aaa

aaa

A

The cofactors of the first row are: 

31223221

3231

2221

13

31233321

3331

2321

12

32233322

3332

2322

11

)(

aaaa
aa

aa
c

aaaa
aa

aa
c

aaaa
aa

aa
c









Matrices - Operations 

The determinant of a matrix A is: 

2112221112121111 aaaacacaA 

Which by substituting for the cofactors in this case is: 

)()()( 312232211331233321123223332211 aaaaaaaaaaaaaaaA 



Matrices - Operations 

Example 2: 





















101

320

101

A

4)20)(1()30)(0()02)(1( A

)()()( 312232211331233321123223332211 aaaaaaaaaaaaaaaA 



Matrices - Operations 
ADJOINT MATRICES 

A cofactor matrix C of a matrix A is the square matrix of the same 

order as A in which each element aij is replaced by its cofactor cij .  

 Example: 













43

21
A













12

34
C

If 

The cofactor C of A is 



Matrices - Operations 
The adjoint matrix of A, denoted by adj A, is the transpose of its 

cofactor matrix 
TCadjA 

It can be shown that: 

A(adj A) = (adjA) A = |A| I 

Example: 








 
















13

24

10)3)(2()4)(1(

43

21

TCadjA

A

A



Matrices - Operations 

IadjAA 10
100

010

13

24

43

21
)( 
















 












IAadjA 10
100

010

43

21

13

24
)( 


























 




Matrices - Operations 

USING THE ADJOINT MATRIX IN MATRIX INVERSION 

A

adjA
A 1

Since  

AA-1  = A-1 A = I 

and 

A(adj A) = (adjA) A = |A| I 

then 



Matrices - Operations 

Example 








 








 


1.03.0

2.04.0

13

24

10

11A










 43

21
A =  

To check AA-1  = A-1 A = I 

 

IAA

IAA



























 


















 
















10

01

43

21

1.03.0

2.04.0

10

01

1.03.0

2.04.0

43

21

1

1



Matrices - Operations 

Example 2 























121

012

113

A

|A| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2 

),1(

),1(

),1(

31

21

11







c

c

c

The determinant of A is 

The elements of the cofactor matrix are 

),2(

),4(

),2(

32

22

12







c

c

c

),5(

),7(

),3(

33

23

13







c

c

c



Matrices - Operations 

























521

741

321

C

The cofactor matrix is therefore 

so 

























573

242

111
TCadjA

and 


















































5.25.35.1

0.10.20.1

5.05.05.0

573

242

111

2

11

A

adjA
A



Matrices - Operations 

The result can be checked using 

AA-1  = A-1 A = I 

 

The determinant of a matrix must not be zero for the inverse to 

exist as there will not be a solution 

Nonsingular matrices have non-zero determinants 

Singular matrices have zero determinants 



Matrix Inversion 

Simple 2 x 2 case 



Simple 2 x 2 case 

Let 











dc

ba
A

and 











zy

xw
A 1

Since it is known that 

A A-1 = I 

then 



























10

01

zy

xw

dc

ba



Simple 2 x 2 case 

Multiplying gives 

1

0

0

1









dzcx

dycw

bzax

byaw

bcadA 

It can simply be shown that 



Simple 2 x 2 case 

thus 

A

d

bcda

d
w

d

cw

b

aw

d

cw
y

b

aw
y

















1

1



Simple 2 x 2 case 

A

b

bcda

b
x

d

cx

b

ax

d

cx
z

b

ax
z

















1

1



Simple 2 x 2 case 

A

c

cbad

c
y

c

dy

a

by

c

dy
w

a

by
w

















1

1



Simple 2 x 2 case 

A

a

bcad

a
z

c

dz

a

bz

c

dz
x

a

bz
x

















1

1



Simple 2 x 2 case 

So that for a 2 x 2 matrix the inverse can be constructed 

in a simple fashion as 

































 ac

bd

A

A

a

A

c

A

b

A

d

1

•Exchange elements of main diagonal 

•Change sign in elements off main diagonal 

•Divide resulting matrix by the determinant 











zy

xw
A 1



Simple 2 x 2 case 

Example  








































2.04.0

3.01.0

24

31

10

1

14

32

1A

A

Check inverse 

A-1 A=I 

I






























10

01

14

32

24

31

10

1



Matrices and Linear Equations 

Linear Equations 



Linear Equations 
Linear equations are common and important for survey 

problems 

Matrices can be used to express these linear equations and 

aid in the computation of unknown values 

Example 

n equations in n unknowns, the aij are numerical coefficients, 

the bi are constants and the xj are unknowns 

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa















2211

22222121

11212111



Linear Equations 

The equations may be expressed in the form 

AX = B 

where 

,,
2

1

11

22221

11211









































nnnnn

n

n

x

x

x

X

aaa

aaa

aaa

A











and 





















nb

b

b

B


2

1

n x n n x 1 n x 1 

Number of unknowns = number of equations = n 



Linear Equations 

If the determinant is nonzero, the equation can be solved to produce 

n numerical values for x that satisfy all the simultaneous equations 

To solve, premultiply both sides of the equation by A-1 which exists 

because |A| = 0 

A-1 AX = A-1 B 

Now since 
A-1 A = I 

We get 
X = A-1 B 

So if the inverse of the coefficient matrix is found, the unknowns, 

X would be determined 



Linear Equations 
Example 

32

12

23

321

21

321







xxx

xx

xxx

The equations can be expressed as 























































3

1

2

121

012

113

3

2

1

x

x

x



Linear Equations 

When A-1 is computed the equation becomes 

























































 

7

3

2

3

1

2

5.25.35.1

0.10.20.1

5.05.05.0
1BAX

Therefore  

7

,3

,2

3

2

1







x

x

x



Linear Equations 

The values for the unknowns should be checked by substitution 

back into the initial equations 

32

12

23

321

21

321







xxx

xx

xxx

3)7()3(2)2(

1)3()2(2

2)7()3()2(3







7

,3

,2

3

2

1







x

x

x



 



Complex Numbers 

Lesson 5.1 



The Imaginary Number i 

• By definition 

 

• Consider powers if i 

 

21 1i i    

2

3 2

4 2 2

5 4

1

1 1 1

1

...

i

i i i i

i i i

i i i i i

 

   

     

    

It's any 

number 

you can 

imagine 



Using i 

• Now we can handle quantities that 

occasionally show up in mathematical 

solutions 

 

 

 

• What about 

1a a i a    

49 18



Complex Numbers 

• Combine real numbers with imaginary 

numbers 

– a + bi 

 

 

 

• Examples 

Real part 
Imaginary 

part 

3 4i

3
6

2
i 

4.5 2 6i 



Try It Out 

• Write these complex numbers in standard 

form   a + bi 

9 75 
16 7 

5 144 
100 



Operations on Complex Numbers 

• Complex numbers can be combined with  

– addition 

– subtraction 

– multiplication 

– division 

• Consider 
   3 8 2i i    

   9 12 7 15i i  
   2 4 4 3i i  



Operations on Complex Numbers 

• Division technique 

– Multiply numerator and denominator by the 

conjugate of the denominator 
3

5 2

i

i
2

2

3 5 2

5 2 5 2

15 6

25 4

6 15 6 15

29 29 29

i i

i i

i i

i

i
i


 

 






 
   



Complex Numbers on the Calculator 

• Possible result 

 

• Reset mode 

Complex format 

to Rectangular 

 

• Now calculator does  

desired result 



Complex Numbers on the Calculator 

• Operations with complex on calculator 

Make sure to use the 

correct character for i. 

Use 2nd-i 



Warning 

• Consider 

 

• It is tempting to combine them 

 

 

– The multiplicative property of radicals only works 

for positive values under the radical sign 

– Instead use imaginary numbers 

16 49  

16 49 16 49 4 7 28       

216 49 4 7 4 7 28i i i        



Try It Out 

• Use the correct principles to simplify the 

following: 

 
3 121  

   4 81 4 81    

 
2

3 144 



Assignment 

• Lesson 5.1 

• Page 340 

• Exercises 1 – 69 EOO 



statistics 

 

STATISTICS 



Definations: Statistics ; Measure of 

central tendency 

• Defination of statistics: statistics may be 
defined as the science of collection, 
organization, analysis and interpretation 
of numerical data. 

• Measures of Central Tendency: An 
average is called a measure of central 
tendency, because it tends to lie centrally 
with the values of the variable arranged 
according to magnitude.  



Arithmetic Mean(A.M.): 

The arithmetic mean of an individual series 
is defined as the quotient of the sum of all 
the values of the variable by the total 
number of items. 

 

           



n

i
in

xx
1

1



93 

Example 1 

Example : The  blood pressure of seven 
middle aged men were as follows: 
 
151, 124, 132, 170, 146, 124 and 113. 

 

The mean is  

 

14.137

7

113124146170132124151




x



In case of discrete frequency 

distribution A.M. is calculated as: 

                                     

A.M. (X) = ∑(fi  xi) /∑ fi   

 

             OR ∑(f x) /∑ f  

 

Where fi  is the frequency of xi (1 ≤I ≤n) 



Example2  
 

 

 

 

Sol.  

 

 

 

 

 

 

 

 

 

                   

           Mean = ∑(fi  xi) /∑ fi = 17900/30 = 596.67 

s.no. Income in rs. (xi) No. of employees (fi) (fi  xi) 

1. 500 4 2000 

2. 520 10 5200 

3. 550 6 3300 

4. 600 5 3000 

5. 800 3 2400 

6. 1000 2 2000 

∑f = 30 ∑(fi  xi) = 

17900 

 

Calculate the A.M. for the following data: 

Income (in rs.): 500  520 550 600 800

 1000 

No. of emp:      4 10 6 5 3 2 



For Grouped or continuous frequency 
distribution, Arithmatic mean is calculated as: 

 

    Arithmatic Mean = A + ∑fi ui    * h                 

                                             ∑ fi   

              

This method is called STEP DEVIATION 
METHOD 



EXAMPLE 3 
Calculate the Arithmetic mean of the marks scored by the students of a class in 
a class test from the following data : 
 

Marks Number of 
students 

Mid Point (xi) ui= (xi – A)/h      fiui 

0-10 12 5 -2 -24 

10-20 18 15 -1 -18 

20-30 27 A = 25 0 0 

30-40 20 35 1 20 

40-50 17 45 2 34 

50-60 6 55 3 18 

Total 100 30 

By step Deviation method, Arithmatic mean  = A+(∑fi ui / ∑fi) * h 
                                                                                          = 25 + (30/100)*10 = 28 



Median :  
The median of a statistical series is defined as the size 
of the middle most item (or the A.M. of two middle 
most items), provided the items are in the order of 
magnitude. 

For an individual series, to find median we proceed as 
follow: 

(a) Arrange the observations in ascending or 
descending order of magnitude. 

(b)  If n is odd; then median = (n+1/2)th  observation. 

 

       If n is even; them median = A.M. of (n/2)th  &                                                                                  

(n/2) + 1 th  observation. 
 



Example 1: 
    Find the median of the values: 

    31   38   27   28   36   25   35   40 

Sol: We arrange the values in ascending order 

        25   27   28   31   35   36   38   40 

         n = 8 (even); 

 Median = A.M. of (8/2)th  & (8/2) + 1 th   
observations 

                 = (31+35)/2 = 33 

 



In case of discrete frequency 

distribution Median is calculated 

as: 
• Step I: Find the cumulative frequency 

(C.F.). 

 

• Step 2: Find N/2 where N= ∑fi  

 

• Step 3: See the C.F. just greater than N/2. 

 

• Step 4: The value of x corresponding to 
C.F. just greater than N/2 is median. 

  



Example 2: 
Calculate the Median of the following frequency distribution : 

 

 

x f c.f. 

1 8 8 

2 10 18 

3 11 29 

4 16 45 

5 20 65 

6 25 90 

7 15 105 

8 9 114 

9 6 120 

N = 120 

 
Here N is 120; N/2 is 60; C.F. just greater than N/2 is 65; So corresponding 

value of x ‘5’ is median. 



For Grouped or continuous frequency 
distribution, Median is calculated as: 

• Step I: Find the cumulative frequency (C.F.). 
• Step 2: Find N/2 where N= ∑fi  

• Step 3: The class corresponding to C.F. just greater than 
N/2 is median class and the value of the median is 
calculated by formula: 

 
Median = l + ((N/2-F)/f) *h 
 
Where l= lower limit of median class 
              F = C.F. of class preceding the median class  
              f is the frequency of median class 
              h is the width of median class. 
  
 
 



Example 3 
Calculate the median from the following distribution: 

Class Freuency Cumative frequency 

5-10 5 5 

10-15 6 11 (F) 

15-20 (Median class) 15 (f) 26 (C.F. just greater than N/2) 

20-25 10 36 

25-30 5 41 

30-35 4 45 

35-40 2 47 

40-45 2 49 

N= 49 

Here N = 49 N/2 = 24.5 C.F. just greater than N/2 is 26 

Corresponding class 15-20 is median class Median = l +((N/2-F)/f) *h 

Median = 15 + (24.5-11)/15 * 5 = 19.5 



MODE 

• The mode of a distribution of the variable  
is that value of the variable for which the 
frequency is maximum. 

• In case of an individual series, mode is 
calculated as by counting the number of 
times the various values repeat 
themselves and the value which occurs 
maximum no. of times is the modal value. 



Example 1 

  Find the Mode of the following data: 

  110  120  130  120  110  140  130  120  
140 

  120          

 

Sol: Since the value 120 occurs the 
maximum no. of times. Hence the modal 
value is 120.   



In case of discrete frequency distribution 

mode is calculated as: 

For discrete frequency distribution, 
generally mode is calculated by finding the 
value for which frequency is maximum.  



Example 2 

 Find the mode of the following distribution: 

Size in inches No of shirts sold 

30 8 

32 17 

34 30 

36 35 

38 18 

40 7 

42 3 

35 shirts of size 36 have the maximum sale. So mode of distribution is “36”. 



For grouped or continuous 

frequency distribution mode is 

calculates as: 
To find the mode of continuous frequency distribution, we follow the 
following steps: 
 
STEP 1: Determine the class of maximum frequency, this class is 
modal class. 
 
STEP 2: Determine the value of mode by applying the formula: 
 
Mode  = l + (f-f1 / f-f1-f2 ) * h 
 
Where l is the lower limit of modal class 
             f is the frequency of modal class 
             h is the width of modal class 
             f1  is the frequency of class preceding the modal class 
             f2   is  the frequency of class following the modal class 
               
                



Example 3 

 Calculate the mode from the following data: 

Rent (in Rs.) No. of houses 

20-40 6 

40-60 9 

60-80 11 

80-100 14 ( f1 ) 

100-120 (Modal class) 20 (f) 

120-140 15 (f2) 

140-160 10 

Highest frequency is 20 Hence Modal class is 100-120 

Mode = l + (f-f1 / f-f1-f2 ) * h 

Here l= 100; h= 20; f= 20; f1  = 14; f2  = 15 

Mode = 100 + (20-14)/(2*20-14-15) *20 = 110.91 



Measures of dispersion 

• Mean Deviation: It is defined as the A.M. 
of the absolute deviations of all the values 
taken from any central value. 

• Standard Deviation: The standard 
deviation of a statistical data is defined as 
the positive square root of the A.M. of the 
squared deviations of items from the A.M. 
of the series under consideration. 



For individual series Mean 

deviation is calculated as: 
 

 Mean Deviation ( x ) = ∑ │xi  - x  │  

                                                                       n 

 Mean Deviation ( Median ) = ∑ │xi  - Median │  

                                                                                                n 

 Cofficient of Mean Deviation (x) = M.D.(X) 

                                                                                                      x 

 Cofficient of Mean Deviation (Median) =        
M.D.(Medain)/Median 

 

 



Example 1 
Calculate the mean deviation about mean and its coefficient for the following data: 

 21 23 25 28 30 32 46 38 48 46 

 

 S.No. Xi  xi - x │xi  - x  │  

1 21 -12.7 12.7 

2 23 -10.7 10.7 

3 25 -8.7 8.7 

4 28 -5.7 5.7 

5 30 -3.7 3.7 

6 32 -1.7 1.7 

7 46 12.3 12.3 

8 38 4.3 4.3 

9 48 14.3 14.3 

10 46 12.3 12.3 

Mean =  

337/10 =33.7 

M.D. = 86.4/10 = 8.64 Coeff. = 8.64/33.7 = 26 ∑│xi  - x  │= 86.4 



For frequency distribution & 

Grouped Data M.D.is calculated as: 

 

Mean Deviation ( x ) = ∑ fi│xi  - x  │  

                                                                              n 

 Mean Deviation ( Median )= ∑ fi │xi  - Median │  

                                                                                                     N 

  



Example 2 
Calculate the mean deviation about mean and its coefficient for the 
following frequency distribution: 

X f fx X-x │x  - x  │  

 

f│x  - x  │  

5 8 40 -4 4 32 

7 6 42 -2 2 12 

9 2 18 0 0 0 

10 2 20 1 1 2 

12 2 24 3 3 6 

15 6 90 6 6 36 

N = 26 ∑f x = 234 

 

∑f │x   - x  │=88  

 

Mean =  234/26=9 M.D. = 88/26= 3.38 Coefficient of M.D. = 3.38/9= 0.38 



Note: 

• Same method will be used for finding the 
mean deviation about median. 

 

• Instead of mean, we are to find median 
first then find mean deviation by 
following the same procedure and same 
formulas. 



For Individual series & frequency 

distribution Standard Deviation is calculated 

as:  



 

Example 1 

 
Find the S.D. and C.V. for the following data: 

4,6,10,12,18 

S.No. x x- x (x – x)2 

1 4 -6 36 

2 6 -4 16 

3 10 0 0 

4 12 2 4 

5 18 8 x64 

Mean = ∑x / n                                                                      Mean = 50/5 = 10 

C.V. = (4.899/10) * 100 = 48.99 %               



Example 2  
Calculate the S.D. and C.V. for the following 

data: 
X f fx X - x (x – x)2  

 

f (x – x )2 

5 12 60 -23 529 6348 

15 18 270 -13 169 3042 

25 27 675 -3 9 243 

35 20 700 7 49 980 

45 17 765 17 289 4913 

55 6 330 27 729 4374 

∑f = 100 

 

∑ fx = 2800 

 

∑ f (x – x )2 = 19900 

 

Mean = 2800/100 = 28                                           

C.V. = S.D. / Mean * 100 = 50.39% 



For Grouped data S.D. is calculated 

as: 

 

              

S.D. =√ ∑fi  ( ui  )
2  /N – (∑fi ui /N)2  /N * h  

  

Where ui  = xi  - A   and N is the sum of 
frequency.  

                        h 

 

              



Example 3  
Find the S.D. & C.V. for the following data:  

class f x U = x-A/h fu u2 fu2  

0-5 20 2.5 -4 -80 16 320 

5-10 24 7.5 -3 -72 9 216 

10-15 32 12.5 -2 -64 4 128 

15-20 28 17.5 -1 -28 1 28 

20-25 20 22.5 0 0 0 0 

25-30 16 27.5 1 16 1 16 

30-35 34 32.5 2 68 4 136 

35-40 10 37.5 3 30 9 90 

40-45 16 42.5 4 64 16 256 

∑f=20

0 

∑fu = -66 ∑fu2   = 1190  

 

 Mean = A + ∑fu/∑f *h = 20.85   S.D. =  √ ∑fi  ( ui  )
2  /N – (∑fi ui /N)2  /N * h = 

12.1                     

C.V. =  C.V. = S.D. / Mean * 100 = 58.03% 

 



OTHER FORMULAS (S.D.) 

• Cofficient of S.D. = S.D./Mean 

 

• Cofficient of variation = (S.D./Mean) *100 

 

• Variance = Square of S.D. 

 



Rank Correlation Coefficient: 

 Rank Coorelation Coefficient is given by 
the    formula:  

                r = 1 – 6 ∑ d2 

                                          n (n2 -1) 

 

Where n is no. of items  

             d is the difference of ranks. 



Example 1 
Find the coefficient of rank correlation for the 
following data: 
 

 

 

x y R1 R2 d=R1-R2 d2 

56 15 3 2 1 1 

58 12 4 1 3 9 

62 16 5 3 2 4 

72 17 7 4 3 9 

54 19 2 5 -3 9 

52 20 1 6 -5 25 

71 21 6 7 -1 1 

90 22 9 8 1 1 

81 23 8 9 -1 1 

92 24 10 10 0 0 

∑d2  = 60 

r = 1 – (6* 60)/10(100-1) = 0.64 



Example 2 Seven Competitors in a music competition are ranked by the judges x & y 
in the following order. What is the degree of agreement between the 
judges. Also find the coefficient of correlation. 

S.No. Competitors R1 R2 d = R1-R2 d2   

1 A 2 1 1 1 

2 B 1 3 -2 4 

3 C 4 2 2 4 

4 D 3 4 -1 1 

5 E 5 5 0 0 

6 F 7 6 1 1 

7 G 6 7 -1 1 

∑d2  = 12 

r = 1-(72/7*48) = .7857 (Agreement between the judges is high) 



Binomial Theorem  



Session Objective 
1. Binomial theorem for positive integral 

index 

2. Binomial coefficients — Pascal’s 

triangle 

3. Special cases 

 (i) General term 

 (ii) Middle term 

 (iii) Greatest coefficient 

 (iv) Coefficient of xp 

 (v) Term dependent of x 

 (vi) Greatest term 



Binomial Theorem 

for positive integral 

index 

For positive integer n 

 
n n n 0 n n–1 1 n n–2 2 n 1 n–1 n 0 n

0 1 2 n–1 na b c a b c a b c a b ... c a b c a b      
n

n n–r r
r

r 0

c a b





where    
n n

r n–r

n! n!
c c for 0 r n

r! n – r ! n – r !r!
    

are called binomial coefficients. 

   n
r

n n –1 ... n – r 1
C ,

1.2.3...r


 numerator contains r factors 

Any expression containing two terms only is 

called binomial expression eg. a+b, 1 + ab etc 

Binomial theorem 

10 10 10
7 10–7 3

10! 10.9.8
C 120 C C

7! 3! 3.2.1
    



Pascal’s Triangle 
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0 C 
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C 
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1 

C 
5 

1 
C 

5 

2 
C 

5 

3 
C 

5 

4 

C 
4 

3 

C 
3 

2 

C 
4 

2 

2 C 
0 

3 C 0 

4 C 
0 

5 C 
0 

 
0

a b 1 

 
1

a b 1a 1b  

 
2 2 2a b 1a 2ab 1b   

 
3 3 2 2 3a b 1a 3a b 3ab 1b    

 
4 4 3 2 2 3 4a b 1a 4a b 6a b 4ab 1b     

 
5 5 4 3 2 2 3 4 5a b 1a 5a b 10a b 10a b 5ab 1b      

n n n 1
r–1 r rc c c 

3 

4 

5 

6 

10 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

10 5 

1 1 

1 1 





Observations from 

binomial theorem 
1. (a+b)n has n+1 terms as 0  r  n 

2. Sum of indeces of a and b of each term in 

above expansion is n 

3. Coefficients of terms equidistant from 

beginning and end is same as ncr = ncn-r 

 
n n n 0 n n–1 1 n n–2 2 n 1 n–1 n 0 n

0 1 2 n–1 na b c a b c a b c a b ... c a b c a b      



Special cases of 

binomial theorem 
   

n nn n n n–1 n n–2 2 n n
0 1 2 nx – y c x – c x y c x y ... –1 c y  

 
n

r n n–r r
r

r 0

–1 c x y



 

 
n

n n n n 2 n n n r
0 1 2 n r

r 0

1 x c c x c x ... c x c x



      

in ascending powers of x 

 
n n n n n–1 n

0 1 n1 x c x c x ... c    
n

n n–r
r

r 0

c x



  
n

x 1 

in descending powers of x 



Illustrative Example 
Expand (x + y)4+(x - y)4 and hence 

find the value of     
4 4

2 1 2 1  

Solution : 

 
4 4 4 0 4 3 1 4 2 2 4 1 3 4 0 4

0 1 2 3 4x y C x y C x y C x y C x y C x y     

4 3 2 2 3 4x 4x y 6x y 4xy y    

Similarly  
4 4 3 2 2 3 4x y x 4x y 6x y 4xy y     

     4 4 4 2 2 4x y x y 2 x 6x y y      

   
4 4 4 2 2 4Hence 2 1 2 1 2 2 6 2 1 1

 
      

 

=34 



General term of (a + 

b)n 
n n r r

r 1 rT c a b ,r 0,1,2,....,n
  

n n 0
1 0r 0, First Term T c a b 

n n 1 1
2 1r 1, Second Term T c a b 

n n r 1 r 1
r r 1T c a b ,r 1,2,3,....,n  

 

1 2 3 4 5 n n 1

r 0 1 2 3 4 n 1 n

T T T T T T T 

 

kth term from end is (n-k+2)th term from beginning 

n+1 terms 



Illustrative Example 

Find the 6th term in the 

expansion of  

and its 4th term from the end. 

9
5

2x

 
 

 

4x

5

Solution : 
9 r r

9
r 1 r

4x 5
T C

5 2x




   

    
   

4 5 4 5
9

6 5 1 5 4 5

4x 5 9! 4 5
T T C

5 2x 4!5! 5 2 x


   
      

   

39.8.7.6 2 .5

4.3.2.1 x
 

5040

x
 



Illustrative Example 

Find the 6th term in the 

expansion of  

and its 4th term from the end. 

9
5

2x

 
 

 

4x

5

Solution : 
9 r r

9
r 1 r

4x 5
T C

5 2x




   

    
   

4th term from end = 9-4+2 = 7th term from 

beginning i.e. T7 

3 6 3 6
9

7 6 1 6 3 6 3

4x 5 9! 4 5
T T C

5 2x 3!6! 5 2 x


   
     

   

3

3

9.8.7 5

3.2.1 x


3

10500

x




Middle term 
CaseI: n is even, i.e. number of terms 

odd only one middle term 

th
n 2

term
2

 
 
 

CaseII: n is odd, i.e. number of terms 

even, two middle terms 

n n
n 2 2

n 2 n n
1

2 2 2

T T c a b


 

th
n 1

term
2

 
 
 

n 1 n 1
n 2 2

n 1 n 1 n 1
1

2 2 2

T T c a b

 

  


 

th
n 3

term
2

 
 
 

n 1 n 1
n 2 2

n 3 n 1 n 1
1

2 2 2

T T c a b

 

  


 

Middle term  

        = ? 
2n

1
x

x

 
 

 



Greatest Coefficient 
n

rc , 0 r n 

CaseI: n even 

n
1

2

n
term T is max i.e. for r

2
Coefficient of middle

n
n

2

C

CaseII: n odd 

n 1 n 3

2 2

n 1 n 1
term T or T is max i.e. for r or

2 2
 

 
Coefficient of middle

n n
n 1 n 1

2 2

C or C 



Illustrative Example 
Find the middle term(s) in the 

expansion of   and  

 

hence find greatest coefficient in 

the expansion 

7
3x

3x
6

 
 

 
 

Solution : 

Number of terms is 7 + 1 = 8 hence 2 middle terms, 

(7+1)/2 = 4th and (7+3)/2 = 5th 

 

3
3 4 13

47
4 3 1 3 3

x 7! 3 x
T T C 3x

6 4!3! 6


 
    

 
 
13

13
3

7.6.5 3x 105
x

3.2.1 82
   



Illustrative Example 
Find the middle term(s) in the expansion 

 of   and hence find greatest  

coefficient in the expansion 

7
3x

3x
6

 
 

 
 

Solution : 

15
15

4

7.6.5 x 35
x

3.2.1 482 3
 

 

4
3 3 15

37
5 4 1 4 4

x 7! 3 x
T T C 3x

6 3!4! 6


 
   

 
 

Hence Greatest coefficient is  
7 7

4 3
7! 7.6.5

C or C or 35
3!4! 3.2.1

 



Coefficient of xp in 

the expansion of (f(x) 

+ g(x))n 
Algorithm 

Step1: Write general term Tr+1 

Step2: Simplify i.e. separate powers of 

x from coefficient and constants and 

equate final power of x to p 

Step3: Find the value of r 



Term independent of 

x in     (f(x) + g(x))n 

Algorithm 

Step1: Write general term Tr+1 

Step2: Simplify i.e. separate powers of 

x from coefficient and constants and 

equate final power of x to 0 

Step3: Find the value of r 



Illustrative Example 

Find the coefficient of x5 in the expansion  

of                     and term independent of x 
10

2
3

1
3x

2x

 
 

 

Solution : 

 
r10 r

10 2
r 1 r 3

1
T C 3x

2x




 

  
 

r
10 10 r 20 2r 3r

r
1

C 3 x
2

   
  

 

For coefficient of x5 , 20 - 5r = 5  r = 3 

3
10 10 3 5

3 1 3
1

T C 3 x
2




 
  

 

Coefficient of x5  = -32805 



Solution Cont. 

 
r10 r

10 2
r 1 r 3

1
T C 3x

2x




 

  
 

r
10 10 r 20 2r 3r

r
1

C 3 x
2

   
  

 

For term independent of x i.e. coefficient of x0 , 20 - 5r 

= 0  r = 4 

4
10 10 4

4 1 4
1

T C 3
2




 
  

 
Term independent of x 

76545

8






Introduction 

• In this chapter you will learn to add 
fractions with different 
denominators (a recap) 

 

• You will learn to work backwards and 
split an algebraic fraction into 
components called ‘Partial Fractions’ 





Partial Fractions 
You can add and subtract several 
fractions as long as they share a 

common denominator 

 

You will have seen this plenty of times 
already! If you want to combine 

fractions you must make the 
denominators equivalent… 

1A 

Calculate: 

Multiply 
brackets  

Group 
terms 





Partial Fractions 
You can split a fraction with two 

linear factors into Partial 
Fractions 

1B 

For example: when split up into Partial Fractions 

when split up into Partial Fractions 

You need to be able to calculate the values of A and B… 



Partial Fractions 
You can split a fraction with two 

linear factors into Partial 
Fractions 

1B 

Split 

into Partial Fractions 

Split the Fraction into its 2 linear 
parts, with numerators A and B 

Cross-multiply to make the 
denominators the same 

Group together as one fraction 

This has the same denominator as 
the initial fraction, so the 

numerators must be the same 

If x = -1: 

If x = 3: 

You now have the values of A and 
B and can write the answer as 

Partial Fractions 





Partial Fractions 
You can also split fractions 

with more than 2 linear factors 
in the denominator 

1C 

For example: 

when split up into Partial Fractions 



Partial Fractions 
You can also split fractions 

with more than 2 linear factors 
in the denominator 

1C 

Split 

into Partial fractions 

Split the Fraction into 
its 3 linear parts 

Cross Multiply to make 
the denominators equal 

Put the fractions 
together 

The numerators 
must be equal 

If x = 1 

If x = 0 

If x = -0.5 

You can now fill in 
the numerators 



Partial Fractions 
You can also split fractions 

with more than 2 linear factors 
in the denominator 

1C 

Split 

into Partial fractions 

You will need to 
factorise the 

denominator first… 

Therefore (x + 1) is a factor… 

Try substituting factors to 
make the expression 0 

Divide the expression by (x + 1) 

You can now factorise 
the quadratic part 



Partial Fractions 
You can also split fractions 

with more than 2 linear factors 
in the denominator 

1C 

Split 

into Partial fractions 

If x = 2 

If x = 3 

If x = -1 

Split the fraction into 
its 3 linear parts 

Cross 
multiply  

Group the 
fractions 

Replace A, 
B and C 

The 
numerators 

must be 
equal 





Partial Fractions 
You need to be able to split a 

fraction that has repeated linear 
roots into a Partial Fraction 

1D 

For example: when split up into 
Partial Fractions 

The repeated root is 
included once ‘fully’ and 

once ‘broken down’ 



Partial Fractions 
You need to be able to split a 

fraction that has repeated linear 
roots into a Partial Fraction 

1D 

Split 

into Partial fractions 

If x = -1 

If x = -0.5 

At this point there is no way to 
cancel B and C to leave A by 

substituting a value in 

Choose any value for x (that 
hasn’t been used yet), and use 

the values you know for B and C 
to leave A 

If x = 0 

3 

Split the fraction into 
its 3 parts 

Make the denominators 
equivalent 

Group up 

The numerators 
will be the same 

Sub in the values 
of A, B and C 





Partial Fractions 
You can split an improper fraction into 

Partial Fractions. You will need to divide 
the numerator by the denominator first 

to find the ‘whole’ part 

1E 

A regular fraction being 
split into 2 ‘components’ 

A top heavy (improper) fraction 
will have a ‘whole number part 

before the fractions 



Partial Fractions 
You can split an improper fraction into 

Partial Fractions. You will need to divide 
the numerator by the denominator first 

to find the ‘whole’ part 

1E 

Split 

into Partial fractions 

Remember, Algebraically an 
‘improper’ fraction is one where 

the degree (power) of the 
numerator is equal to or exceeds 

that of the denominator 

If x = 2 

If x = 1 

Divide the numerator by 
the denominator to find 

the ‘whole’ part 

Now rewrite the original 
fraction with the whole 

part taken out 

Split the fraction into 2 
parts (ignore the whole 

part for now) 

Make denominators 
equivalent and group up 

The numerators will be 
the same 



Summary 

• We have learnt how to split Algebraic 
Fractions into ‘Partial fractions’ 

 

• We have also seen how to do this 
when there are more than 2 
components, when one is repeated and 
when the fraction is ‘improper’ 


