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Matrices - Introduction

Matrix algebra has at least two advantages:

*Reduces complicated systems of equations to simple
expressions

«Adaptable to systematic method of mathematical treatment
and well suited to computers

Definition:

A matrix is a set or group of numbers arranged in a square or
rectangular array enclosed by two brackets

4 2 a b

-] -3 0 c d




Matrices - Introduction

Properties:

A specified number of rows and a specified number of
columns

*Two numbers (rows x columns) describe the dimensions
or size of the matrix.

Examples:
3x3 matrix 1 2 4 _

2x4 matrix 4 -1 5|1 1 3 -3 [1 —1]
3 3 3/|0 0 3 2

1x2 matrix N i _




Matrices - Introduction

A matrix is denoted by a bold capital letter and the elements
within the matrix are denoted by lower case letters

e.g. matrix [A] with elements a;;

A = d; Qe &y Ay
mA" dy;  dyy.es aij dy,
_aml am2 aij amn a

| goes from 1tom

Jjgoes from1ton



Matrices - Introduction
TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of
columns is always 1

1 a4 ] A

A 1 A,y

2 =3 ‘
- _aml_




Matrices - Introduction
TYPES OF MATRICES

2. Row matrix or vector

Any number of columns but only one row

11 6] [0 35 2]

&, a, ay - a,)



Matrices - Introduction

TYPES OF MATRICES

3. Rectangular matrix

Contains more than one element and number of rows Is not
equal to the number of columns

1 1 _ _
3 7 1 1 1 0 O
77 2 03 3 0
_76_

m=Nn



Matrices - Introduction

TYPES OF MATRICES
4. Square matrix

The number of rows is equal to the number of columns

(a square matrix A has an order of m)

11 1 1 1
9 9 0

3 0

= S e 6 1

The principal or main diagonal of a square matrix is composed of all
elements a; for which i=



Matrices - Introduction

TYPES OF MATRICES

5. Diagonal matrix

A square matrix where all the elements are zero except those on
the main diagonal

) ) 3000
100 0 3 0 0
0 2 0 0 05 0

0 0 1 000 9

i.e.a; =0 foralli#j

a; # 0 for some or all i = |



Matrices - Introduction
TYPES OF MATRICES

6. Unit or Identity matrix - |

A diagonal matrix with ones on the main diagonal

1.0 0 0

0100 [1 0| [a
0 010 0 1| |0
0oo0o0 1|

i.e.a; =0 forall i #]

a; =1 forsome or all I =




Matrices - Introduction

TYPES OF MATRICES

7. Null (zero) matrix - 0

All elements in the matrix are zero

0 0 0 0
0 00 O
0

R 00 0

aij =10 For all i,j



Matrices - Introduction
TYPES OF MATRICES

8. Triangular matrix

A square matrix whose elements above or below the main
diagonal are all zero

or N =
N b O
w O O

ol N e
N B O
w O O
o O K
O = ™
W o ©




TYPES OF MATRICES

8a. Upper triangular matrix

A square matrix whose elements below the main
diagonal are all zero

a;
0
0

Matrices - Introduction

0 a;

l.e.a; =0 foralli>]

o O =

O B~ O

w O

o O O -

o O .

O N N B

w o0 ~ b




Matrices - Introduction

TYPES OF MATRICES

8b. Lower triangular matrix

A square matrix whose elements above the main diagonal are all
Zero

i 0 1 00
i & 0 1 0
G S5 2 3

l.e.a; =0foralli<]



Matrices — Introduction

TYPES OF MATRICES
9. Scalar matrix

A diagonal matrix whose main diagonal elements are
equal to the same scalar

A scalar is defined as a single number or constant

a, 0 0] 1L 0 0] [6
0 a 0| [0 10

J

0
0 0 aij_ _O 0 1_ 0
0

o O O O
o O O O

l.e.a; =0 forall i =)
a; =aforalli=]

o O O O




Matrices

Matrix Operations



Matrices - Operations

EQUALITY OF MATRICES

Two matrices are said to be equal only when all
corresponding elements are equal

Therefore their size or dimensions are equal as well

or N =
N b O
w O O
or N =
N b O
w O O




Matrices - Operations

Some properties of equality:
[iIf A=B, then B = A for all A and B
Jif A=B,and B=C,then A=C forall A, Band C

or N
N kb O
w O O
o
[
&)
N
H
&)
N
N
&)
N
w

If A =B then Q; = b.



Matrices - Operations

ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, A and B of the same
size yields a matrix C of the same size

Matrices of different sizes cannot be added or subtracted



Matrices - Operations

Commutative Law:
A+B=B+A

Assoclative Law:
A+(B+C)=(A+B)+C=A+B+C

7 3 -1 1 5 6| |8 8
2 -5 6| |-4 -2 3| |-2 -7

A B C
%3 2X3 2X3




Matrices - Operations

A+0=0+A=A

A + (-A) = 0 (where —A Is the matrix composed of —a;; as elements)

6 4 2] [1 2 0]l [5 2 2
3 2 71110 8| |2 2 -1




Matrices - Operations

SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single
element)

Let k be a scalar quantity; then
KA = Ak

3 -1
2 1
2 -3
4 1

Ex. If k=4 and




Matrices - Operations

~1 -1 12 -4

1 1 8 4
4 x x4 =

-3 -3 8 -12

1 1 16 4

Properties:

k (A+B)=KA+KkB

e (k +g)A=kA +gA

« k(AB) = (kA)B = A(k)B
* K(gA) = (kg)A



Matrices - Operations

MULTIPLICATION OF MATRICES

The product of two matrices is another matrix

Two matrices A and B must be conformable for multiplication to
be possible

I.e. the number of columns of A must equal the number of rows
of B

Example.
A x B = ~C
(1x3) (3x1) (1x1)



Matrices - Operations

B x A = Notpossible!
(2x1) (4x2)

A x B = Not possible!
(6x2) (6x3)

Example
A X B = C
(2x3) (3x2) (2x2)



Ay
_a‘21

(&,
(&,
(ay;
(&,

Matrices - Operations

di, dy3
a‘22 a‘23_
0,1) +(ay, %

0,,) + (@, %
0,1) + (A, X

0,,) +(8,, X

bll
D,
b31

b,,

022

032_

Cll

_C21

0,,) + (a3 %by;) =Cyy
0,,) + (a3 x0y,) =Cy,
0,,) + (A3 %X B;;) =Cyy

0,,) + (33X D5,) =y,

C12
C22_

Successive multiplication of row 1 of A with column j of

B — row by column multiplication



Matrices - Operations

1 2 3 g 2_ (Ix4)+(2x6)+(3x5) (Ix8)+(2x2)+(3x3)
42 7)., | (Ax4)+(2x6)+(7x5) (4x8)+(2x2)+(7x3)
31 21
163 57
Remember also:
A=A
1 0] [31 21 31 21

63 57 63 57



Matrices - Operations

Assuming that matrices A, B and C are conformable for
the operations indicated, the following are true:

Al=1A=A

A(BC) = (AB)C = ABC - (associative law)
A(B+C) =AB + AC - (first distributive law)
(A+B)C = AC + BC - (second distributive law)

W o

Caution!

1. AB not generally equal to BA, BA may not be conformable
2. If AB =0, neither A nor B necessarily =0

3. If AB =AC, B not necessarily = C



Matrices - Operations

AB not generally equal to BA, BA may not be conformable

1 2
T =

S
g —

1 2|3 4] [3 8~
TS = -

5 0/0 2| |15 20

3 41 2] [23 6
ST = :

0 2|5 0] |10 O




Matrices - Operations

If AB =0, neither A nor B necessarily =0

1 1) 2 3 0 O
O(—-2 -3 |0 O




Matrices - Operations
TRANSPOSE OF A MATRIX

If :

A=2A3=
2X3 5 3 1

Then transpose of A, denoted AT is:
5

A=A =4 3

_7 1_

d. =d: For all i and |



Matrices - Operations

To transpose:
Interchange rows and columns

The dimensions of AT are the reverse of the dimensions of A

2

A:2A3 — 2X3

T T2
A=A = 3X 2

~N B~ DN
= W O




Matrices - Operations

Properties of transposed matrices:
1. (A+B)T=AT+BT

2. (AB)T=BTAT

3. (KA)T=KAT

4. (ANT=A



Matrices - Operations

1. (A+B)T=AT+BT

7 3 -1][1 5 6] [8 8 5] _
2 5 6|1-4 -2 3| |-2 -7 9
7 2] (1 -4] [8 -2
3 —-5[+|5 -2|=|8 -7
-1 6 6 3 5 9

8 -2
8 —7




Matrices - Operations

(AB)T = BT AT




Matrices - Operations

SYMMETRIC MATRICES

A Square matrix is symmetric if it is equal to Its
transpose:

A=AT
b
A:
AT :_a b |




Matrices - Operations

When the original matrix Is square, transposition does not
affect the elements of the main diagonal

S
_C d_

A=

Al =

o
The identity matrix, I, a diagonal matrix D, and a scalar matrix, K,
are equal to their transpose since the diagonal is unaffected.



Matrices - Operations

INVERSE OF A MATRIX

Consider a scalar k. The inverse is the reciprocal or division of 1
by the scalar.

Example:
k=7 theinverseof kork!=1/k =1/7

Division of matrices is not defined since there may be AB = AC
while B # C

Instead matrix inversion IS used.

The inverse of a square matrix, A, If it exists, Is the unique matrix
Al where:

AAl = A1A=



Matrices - Operations

Example: ~ _
, [3 1
A:ZA —

_2 1_

AL 1 -1

__ 2 3 —
Because: "1 173 1___ _
-2 32 1| |0 1

1

0
311 -1] [1
2 1}{—2 3| |0



Matrices - Operations

Properties of the inverse:

(AB) 1 =BA™
(AH1=A
(A") " =(A")
1 E -1
(kA== A

A square matrix that has an inverse is called a nonsingular matrix
A matrix that does not have an inverse is called a singular matrix
Square matrices have inverses except when the determinant is zero

When the determinant of a matrix is zero the matrix is singular



Matrices - Operations
DETERMINANT OF A MATRIX

To compute the inverse of a matrix, the determinant is required

Each square matrix A has a unit scalar value called the
determinant of A, denoted by det A or |A|

1 2
If A=

6 5
then ‘A‘:é 2




Matrices - Operations

If A =[A] Isasingle element (1x1), then the determinant is
defined as the value of the element

Then |A| =det A= a,,

If A is (n X n), its determinant may be defined in terms of order
(n-1) or less.



Matrices - Operations

MINORS
If A 1S an n x n matrix and one row and one column are deleted,

the resulting matrix is an (n-1) x (n-1) submatrix of A.

The determinant of such a submatrix is called a minor of A and

Is designated by m;; , where i and J correspond to the deleted

row and column, respectively.

m;; Is the minor of the element a;; in A.



Matrices - Operations

eq.
) a, &, a,
A= d,; dy, dy

| dj; Az, dgz

Each element in A has a minor
Delete first row and column from A .

The determinant of the remaining 2 x 2 submatrix is the minor
of a,,

a‘22 a23

my, =
dj, da3




Matrices - Operations

Therefore the minor of a,, Is:
a21 a23

my, =
dj; Adgg

And the minor for a,; Is:

d,; Ay,
My ; =

a3 1 a‘32



Matrices - Operations
COFACTORS

The cofactor C;; of an element a;; Is defined as:

Cij — (_1)I+J mij

When the sum of a row number i and column j is even, ¢; = m; and
When |+J |S Odd, C'J :'mij

C,,(1=1]=1)= (_1)1+l My, =+My
C,(1=1]=2)= (_1)1+2 M, =—m;,

Ci5(1=1]=3)= (_1)1+3 Mz =+M;



Matrices - Operations

DETERMINANTS CONTINUED

The determinant of an n x n matrix A can now be defined as

Al=det A=a,,C;; +a,,C, +...+,C,

The determinant of A is therefore the sum of the products of the
elements of the first row of A and their corresponding cofactors.

(It is possible to define |A| in terms of any other row or column
but for simplicity, the first row only is used)



Matrices - Operations

Therefore the 2 x 2 matrix :

diy  ayp
_a21 a‘22_

A=

Has cofactors :
C,=My, = ‘azz‘ =d,,

And:
Co=—My, = ‘3-21‘ -

And the determinant of A Is:

‘A‘ = y,Gyp + .6, = ag1ay, —a3,85,



Matrices - Operations

Example 1. ) )
3 1
_1 2_
A=3)(-OD) =5

A —




Matrices - Operations

For a 3 X 3 matrix:

A

a’23

a33

The cofactors of the first row are:

Cl 1

C12

d; G
dy; Ay
A3 Ay
dy;  Gy;
dy; ds;
(|21 Qg
dy; g3
dy; Gy
dy; Ay,

= a,y,033 — Ay3ds,

— _(a21a33 — a23a31)

= @yy83, — 8y,ds




Matrices - Operations
The determinant of a matrix A is:
‘A‘ = A 1Cyq T 450p, =a185; —845d,
Which by substituting for the cofactors in this case Is:

‘A‘ — ail(a22a33 - a23aaz) _ a12(a21a33 - a23a31) + a13(a21a32 o a22a31)



Matrices - Operations

Example 2:

1
A= 0
-1

o N O
W

‘A‘ — ail(a22a33 - a23aaz) _ a12(a21a33 - a23a31) + a13(a21a32 o a22a31)

A=0)(2-0)-(0)(0+3)+1)(0+2)=4



Matrices - Operations
ADJOINT MATRICES

A cofactor matrix C of a matrix A Is the square matrix of the same
order as A in which each element a;; is replaced by its cofactor c;; .

Example:

If A=

12
__3 4_

4 3
-2 1

The cofactor Cof Ais C =




Matrices - Operations

The adjoint matrix of A, denoted by adj A, is the transpose of its

cofactor matrix
adjA=C'

It can be shown that:
A(adj A) = (adjA) A= |A| |

Example: 1 2
A=
__3 4_
A= D4 -(2)(-3)=10
. (4 -2
adjA=C' =
_3 1 —




Matrices - Operations

: 1 2
e[, 7

(adjA) A =

4 o]

3 1

4 -2
3

1

2

-3 4

|

|

10 O
=10l
0 10
10 O
=10l
0 10




Matrices - Operations

USING THE ADJOINT MATRIX IN MATRIX INVERSION

Since
AALl =ATA=|

and
A(adj A) = (adjA) A= |A| |

then
Al adJA

A



Matrices - Operations

To check

AA™ =

A7A=

)
-3 4
-2] [04 -0.2
1| (03 01
AAl = A1A=
204 -02| |1
4103 01 ] |0
-02]1 2] J1
0.1 |-3 4| |0




Matrices - Operations

Example 2
3 -1 1]
A=2 1 O
1 2 -1

The determinant of A is
Al = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2
The elements of the cofactor matrix are
c,, =+(-1), C,, =—(-2), C,, =+(3),

C,, = —(-1), C,, = +(—4), C,3 =—(7),
Cyy = +(-1), Cy, =—(—2), Cy5 = +(9),



Matrices - Operations

The cofactor matrix is therefore

1
C=|1
-1
SO -
adjA=C' =
and
AL adjA 1
A -2

2 3
—4 -7
2 5

05
-1.0

-15

~05 05"
20 -1.0
35 -25




Matrices - Operations

The result can be checked using
AAL = A1TA=

The determinant of a matrix must not be zero for the inverse to
exist as there will not be a solution

Nonsingular matrices have non-zero determinants

Singular matrices have zero determinants



Matrix Inversion

Simple 2 x 2 case



Simple 2 x 2 case

Let

2 b and B

A= Al =
C

Since 1t Is known that
AAl=|

then




Simple 2 x 2 case
Multiplying gives
aw+by =1
ax+bz=0
cw+dy=0
cXx+dz =1

It can simply be shown that

|Al=ad —bc



Simple 2 x 2 case

thus




Simple 2 x 2 case




Simple 2 x 2 case




Simple 2 x 2 case




Simple 2 x 2 case

So that for a 2 x 2 matrix the inverse can be constructed

In a simple fashion as

A—l

d b
AIA
—C a
AIA

*Exchange elements of main diagonal

*Change sign in elements off main diagonal

Divide resulting matrix by the determinant




Simple 2 x 2 case

Example
2 3

A=

_4 1_

a1 L[ 1 -3|_[-01 03
- 10|-4 2| |04 -02

Check Inverse
Al A=|

111 -3
10(-4 2 |4 1| |0




Matrices and Linear Equations

Linear Equations



Linear Equations

Linear equations are common and important for survey
problems

Matrices can be used to express these linear equations and
aid in the computation of unknown values

Example

n equations in n unknowns, the a;; are numerical coefficients,
the b; are constants and the x; are unknowns

A X) + X, +0-F+ X, :bl
&, X, +a,,X, ++--+a,. X =D,

2nn

a X +a.,X,+---+a X =Db

n



Linear Equations

The equations may be expressed in the form

AX =B
where
A Qe Qg X _bl_
A— dy; Ayt Ay X — X, and B— bz
_anl Apy ann_ _Xn_ -bn—
nxn nx1 nx1l

Number of unknowns = number of equations = n




Linear Equations

If the determinant is nonzero, the equation can be solved to produce
n numerical values for x that satisfy all the simultaneous equations

To solve, premultiply both sides of the equation by A=t which exists
because |A| £ 0

Al1AX=A1lB
Now since
AlA=1I
We get
J X=A1lB

So if the inverse of the coefficient matrix is found, the unknowns,
X would be determined



Linear Equations

Example
X, =X, + Xy =2
2%, + X, =1
X, +2X, —X; =3

The equations can be expressed as

3 -1 1]x
2 1 0 |x =1
1 2 1| x,




Linear Equations

When A is computed the equation becomes

05 -05 0572
X=A'B=|-1.0 20 -10|1|=
—15 35 -25|3

Therefore
X, =2,
X, = =3,
X =—1




Linear Equations

The values for the unknowns should be checked by substitution
back into the initial equations

X, =2, X, — X, + X =2
X, = —3, 2%, + X, =1
X, =—7 X, +2X, —X; =3

3x(2)—(-3)+(-7)=2
2x(2)+(-3)=1
(2)+2x(-3)—(-7)=3






Complex Numbers

Lesson 5.1



The Imaginary Numbe.

\/,
1=
. By definiton ¥ L7 Q

» Considerpoweys If |

i°=i%-i=-i
i =i i‘=-1.-1=1
5 _i4



Using |

« Now we can handle quantities that
occasionally show up in mathematical

solutions

J-a =J-1-Va=iVa

 \What about
x/ —49 J-18



Complex Numbers

« Combine real numbers with imaginary
numbers

NS

Real part Im%ga:rr;ary
—6+§i
* Examplgs 2

45+i-26



Try It Out

« Write these complex numbers in standard
form a+ bi

9—/-75
«/—16 + 7
5—/-144

—\/—100



Operations on Complex Numbers

« Complex numbers can be combined with
— addition
— subtraction
— multiplication

- divisior (-3+i)—(-8+2i)
(2257 +150)

(2—4i)+(4+3i)



Operations on Complex Numbers

 Division technique

— Multiply numerator and denominator by the
conjugate of the denominator
3 3 5+2i
5-2i  5-2i 5+2i
~ 15i +6i°
25— 4i?
_ —6+15i 6 15,

—— i
29 29 29




Complex Numbers on the Calculator
[T a1 setra|cate|other Prontolc1ean U] |

Possible result

Reset mode
Complex format
to Rectangular

ERKOR

-,

Hon—real result

T 3 = L)

[

HODE

.
~

I
.8
o]

[F‘age- iTF“agE ETF‘age 3]

=
=
r

Current Folder

Uector Format

Enter=5HUE
h.ﬂll!lﬂilu

= = o
D15T15g Digite. ... FLORT 6+
Argle. . ceeeeeennns DEGREE +

Expnnent1al Fnrmat HORMAL -+
Complex Format.

* Pretty Print......

FUHETIDH+

|1 tREAL |

ESC=CAMHCEL » )

MAIN DEG AUTO

Now calculator does = -

desired result

m 45+ 3

Eri

FUMC 1/=0

o Hon—real i~esult

A+ 1

JL495+3

HAlW nES ANITH

FlIW™ =A%n0



Complex Numbers on the Calculator

 Operations with complex on calculator

#9 TExAs INSTRUMENTS TI-92

Qj [FE1sebralcarclother Pramiolcieen upl |

8[43+ 3 Error: Hon-real result
545+ 3 I+7-4
m3-24l[5r51] 28+34

HMAIN DEG AUTO

FUHC 3/%0

MATH FEEAY VER-LINE

cataLon  custom  cesm ¥

x
EE

Bl E.
AMS  ENTAW

o e




S
Wgr/nﬁwg
e Consider J—16 -/—49

e It is tempting to combine them
J-16-—49 =+16-49=4.7=28 [V

WRONG

— The multiplicative property of radicals only works
for positive values under the radical sign

— Inst imaginary numbers
-16--49 =41-71=4-7-1"=-28



Try It Out

 Use the correct principles to simplify the

following: J=3.J-121
(4+\/—:81)°(4—\/—:81)

o-)



Assignment

e Lessonb.1
« Page 340
 Exercises1—69 EOO



STATISTICS




Definations: Statistics ;: Measure of
central tendency

e Defination of statistics: statistics may be
defined as the science of collection,
organization, analysis and interpretation
of numerical data.

e Measures of Central Tendency: An
average is called a measure of central
tendency, because it tends to lie centrally
with the values of the variable arranged
according to magnitude.




Arithmetic Mean(A.M.):




Example 1




In case of discrete frequency
distribution A.M. Is calculated as:




Example2

Sol.

Calculate the A.M. for the following data:

Income (in rs.): 500 520 550
1000

No. of emp:

600




For Grouped or continuous frequency
distribution, Arithmatic mean is calculated as:




EXAMPLE 3

Calculate the Arithmetic mean of the marks scored by the students of a class in
a class test from the following data :

By step Deviation method, Arithmatic mean = A+()fiui /Y fi) *h
=25+ (30/100)*10 = 28










C J “ C vdlutCT U , U O JUILLU —~ LU

C.F.just greater than N/2 is median.




Example 2:

Calculate the Median of the following frequency distribution :




For Grouped or continuous frequency
distribution, Median is calculated as:




Example 3

Calculate the median from the following distribution:

15-20 (Median class) 26 (C.F. just greater than N/2)







Example 1




In case of discrete frequency distribution
mode Is calculated as:




Example 2

Find the mode of the following distribution:




frequency distribution mode is

LAlLUIALES dS

f,  the frequency of class following the modal class




Example 3

Calculate the mode from the following data:

100-120 (Modal class)




Measures of dispersion




For individual series Mean




Example 1

Calculate the mean deviation about mean and its coefficient for the following data:
21 23 25 28 30 32 46 38 48 46

1
2
3
4
5
§)
[
8
9

[HE
o




For frequency distribution &
Grouped Data M.D.is calculated as:

Mean Deviation ( x ) =), { I X; - X ‘
: I
Mean Deviation ( Median )= ). f. | x, - Median
N




Example 2

Calculate the mean deviation about mean and its coefficient for the
following frequency distribution:







For Inaiviaual Series & Trequency
distribution Standard Deviation 1s calculated
as:

S.D.(Individual series) = N YiE(x i —x)? /n

Where x, are the values of variable under
consideration.

S.D. (For Discrete Freqguency distribution):

Where N is the sum of all the frequencies.



Example 1

Find the S.D. and C.V. for the following data:
4,6,10,12,18

Mean=>x/n Mean = 50/5 = 10

S.D. = J Yi=M(xi —mean)? /n S.D. =V120/5 = 4.899

C.V. = (4.899/10) * 100 = 48.99 %




Example 2
Calculate the S.D. and C.V. for the following

60 - 6348
270 - 3042
675 - 243
700 980
765 4913
330 4374
> fx =2800 S f (X — X )2= 19900




For Grouped data S.D. is calculated
as:




Acll 1L

Find the S.D. & C.V. for the following C

2.5 -4 -80 16 320
7.5 -3 -72 9 216
12.5 -2 -64 4 128
17.5 -1 -28 1 28
22.5 0 0 0 0

27.5 1 16 1 16
32.5 2 68 4 136
37.5 3 30 9 90
42.5 4 64 16 256

S £=20 S'fu = -66 Sfuz = 1190
0




OTHER FORMULAS (S.D.)




Rank Correlation Coefficient:




Example 1

Find the coefficient of rank correlation for the
following data:

Ol OO, INDNINTOT DB |W
Ol O[NNI (B WIEFL (DN

[N
o
[N
()

r=1— (6* 60)/10(100-1) = 0.64




Seven Competitors in a music competition are ranked by the judges x & y
in the following order. What is the degree of agreement between the
judges. Also find the coefficient of correlation.

-1

yd? =12

r=1-(72/7*48) = .7857 (Agreement between the judges is high)




Binomial Theorem



Session Objective

1. Binomial theorem for positive integral

Index
2. Binomial coefficients — Pascal’s
triangle
3. Special cases
(1) General term
(i) Middle term
(i11) Greatest coefficient
(iv) Coefficient of xP
(V) Term dependent of x

(Vi) Greatest term



Binomial I heorem

for positive integral

Any expressio'[ﬁ@@wng two terms only is
called binomial expression eg. a+b, 1 + ab etc

For positive integer n
(a+b)" ="coa"b’ +"c,a"b' +" c,@"%h% +...+ "¢, @™ + "¢ a’h"

n
= > "c,a”"b'Binomial theorem

r=0 n! n!

n _ _ ~n
where ¢ = r!(n—r)! _(n—r)!r! =C,, for 0<r<n

are called binomial coefficients.

i n(n—1)...(n—r+1) .
Cr = . humerator contains r factors
1.2.3..r
|
0. _ 100 1098

77131 321

=120 ="°C,,_, ='°C,



Pascal’s Triangle
1 (a+b)’ =1

vl (a+b)' —1a+1b
1\/ 2\/ (a+b)” =1a? + 2ab +1b?
1\/ 3\/ 3\/ (a+b)’ =1a® +3a%b+3ab? +1b°
1\/ 4\/ 6\/ 4\/1 a+b =1a* +4a’b +6a’b” + 4ab® +1b*

1 (a+ b) —1a® +5a’b +10a°b? +10a%b® + 5ab* +1b°

1 1
CO : ; Cl
2C )
2 v K/
0 %, —
3 3
AVAVAVE
G C,
4 4 4 4C
W\ N NN
5
5C 5C 5C 5C C




Observations from
binomial theorem

1. (a+b)"hasn+ltermsas0<r<n

2. Sum of indeces of a and b of each term in
above expansion is n

3. Coefficients of terms equidistant from
beginning and end Is same as "c, = "c,,,

n — — —
a+b) ="c.a"b’ +"c.a" b +"c.a" % +...+"c. .ah"" +"¢c.a’p"
0 1 2 n—1 n




Special cases of
binomial theorem

(x=y)" ="cox" =" e X"y + e, X" yP L+ (1) e,y

n
_ Z(_1)r nCr x"=T yr
r=0

n

n
n
(1+x)" ="cg +"cyx+"cy X% ...+ e X" = chf X'
r=0

In ascending powers of X

(1+x)" =" cox" +" X" +...+" ¢, 3 e, X = (x+1)
r=0

In descending powers of X



[llustrative Example
Expand (X + y)*+(x - y)*and hence
find the value of (ﬁ+ 1)4 N (ﬁ_ 1)4

Solution :
(x+ y)4 = 1Cox*y? +4CpCyt + 4C,x%y? + 4Coxly? +4C Xy
=x* + 4x3y+ 6x2y2 + 4xy3 +y4
Similarly  (x-y)* = x*-4x%y +6x%y2 —4xy® +y*
s(x+ y)4 +(x— y)4 = 2(x4 +6x°y? +y4)
Hence (JE+1)4 +(J§—1)4 - 2(\/54 +642°12 +14j
=34



General term of (a +
b)"

T., :”Cr a'b'r=012.....n

[+

r =0, First Term Ty ="cgao®

r =1, Second Term T, ="ca" bt

T ="c

="¢_,a" b r=123,....,n

r=01 2 3 4 N—-1 n
T1Tp T3 T4 T5 T Tha n+1 terms

kth term from end is (n-k+2)th term from beginning



[llustrative Example

Find the 6th term in the
expansion of (4x 5 ;9

and its 4th term(frgm thg ¢nd.
Solution :
9—
(2] (3]
Te=Ts.1="Cs (ﬁf (;5)5 — 4%
5 ) \2x 4151 5455,
9.8.7.6 235 5040

4321 X T



[llustrative Example

Find the 6th term In the
expansion of ﬂ“_ﬂij
and its 4th term frébm & end.
Solution :
O—r r
9 4X =)
T, ="C —
a=®e( 5] (5]

4th term from end = 9-4+2 = 7th term from
beginning 1.e. T,

9.8.7 5°

9 4’ (5)°_ 91 43"
m6+m =05 ) | 2x ) T 316153,6,3

10500

3

T 3.2.1,3



Middle term

Casel: n iIs even, I.e. number of terms
odd only one middle term

(n+2jth orm T2 = T ="c,, azb?

Casell: ni1s odd, 1.e. number of terms
even, two middle terms

=

N+l n-

th
(n_—l_l] term Thi = Tha :nCn—l ashb
2

— — 1 —
2 2 2

th -
n-+ 3 n
—= | term Thez = Thaa =Cpg @ > b?
2 > 1t 5

Middle term

|

2N
-
X4+= |
X



Greatest Coeffidientn

Casel: n even

Coefficient of middle term T, is max ie. for rzg

—+1
2
n
Cn
2
Casell: n odd
Coefficient of middle term T ni1 OF Ty IS maxie. for r = n_1or n+l
2 2 2
n n
Cn or Cn+1

2 2



[llustrative Example

Find the middle term(s) in the

expansion of L a) !
3X ——

hence find great tcoeﬁi ent in

the expansion

Solution :
Number of terms is 7 + 1 = 8 hence 2 middle terms,
(7+1)/2 = 4th and (7+3)/2 = 5th

7 i) 71 343
Ta=Ta1="Ca(3)") == | =75, 53

_7653x° 105 13
3.2.1 93 8




[llustrative Example

Find the midgle term(s) in the expansion
of [ng_ ﬁl and hence find greatest
coefficient’in the expansion

Solution :
T _T 7c, (3 3 _x3 ) 71 33510
5= 441 — 4( X) ? _3|4| 64
_7.6.5 X2 35 15
3.2.1043 48

Hence Greatest coefficient Is

I
7C4 or 7C3 or r —7'6'5—35

3141 321




Coerticient of xXP In
the expansion of (f(x)

+9(x))"

Stepl: Write general term T,

Algorithm

Step2: Simplify I.e. separate powers of
X from coefficient and constants and
equate final power of x to p

Step3: Find the value of r



Term Independent of
xin - (f(x) + g(x))"

Algorithm

Stepl: Write general term T, ,
Step2: Simplify I.e. separate powers of

X from coefficient and constants and
equate final power of x to 0

Step3: Find the value of r



[llustrative Example

Find the coefficient of x> in the expansion
of (3)(2 ~1an term independent of x

2x3

Solution :

10—r r
10 2 1
2X

I
_10¢ 310-1 (_ }j 20-2r-3r
2
For coefficientof x>, 20-5r=5=r=3

3
Tau1= 10(:3310—3( 1) w5 Coefficient of x5 = -32805



Solution Cont.

10—r r
10 2 1
Tri1= C%(Bx ) (___5)
2X

I
_10¢ 310-1 (_ %) 20-2r-3r

For term independent of x i.e. coefficient of x°, 20 - 5r
=0=r=4

76545

4
10~ 10-4( 1 -
Tgq1=""Cy3 (__j Term independent of x 5

2




Partial Kractions



Fartial Fractions

Sx-4
‘?' x? >—(x—

Introduction

* In this chapter you will learn to add

fractions with different
denominators (a recap)

- You will learn to work backwards and

split an algebraic fraction into
components called 'Partial Fractions'’



Yeachings for Exercise
LA




Sx-4

4..2' x% -x-2

N A

Partial Fractions

You can add and subtract several
fractions as long as they share a
common denominator

You will have seen this plenty of times
already! If you want to combine
fractions you must make the
denominators equivalent...

Partiq

| Fractions

alculate: 2 1
x+3

><x+1

o 2(x + 1)

(x+3)(x+1)

2x + 2
(x+3)(x+1)

x+1
x+3
><x+3
1(x + 3)
(x+3)(x+1)
Multiply
brackets
x4+ 3
(x+3)(x+1)
Group
terms

x—1

(x +3)(x+ 1)

1A



Yeachings for Exercise
1B




<2

N A

Partial Fractions

Sx-4
X% -x-2

Partial Fractions

You can split a fraction with two
linear factors into Partial

Fractions
For example: x+3)(x+1) ~ x+3  x+1 when split up into Partial Fractions
11 A B . . . .
(x—3)(x+2) x-3 TS when split up into Partial Fractions

You need to be able to calculate the values of A and B...

1B



Sx-4
X% -x-2

2

N /7

Partial Fractions

You can split a fraction with two
linear factors into Partial
Fractions
Split
6x — 2
(x—3)(x+1)

into Partial Fractions

If x=-I

If x=3:

bx — 2
(x=3)(x+1)

A B
x-3) T x+1

Partial Fractions

Split the Fraction into its 2 linear
parts, with numerators A and B

Cross-multiply fo make the

A(x + 1) B(x — 3) denominators the same

x-3Dx+D) T -3

+1)

Group together as one fraction

A(x +1) + B(x —3)

(x-3)E+1) This has the same denominator as
the initial fraction, so the
numerators must be the same
6x —2 = A(x+1)+B(x-3)
-8 = —4B

2 = B
16 = 4A

4 = A

You now have the values of A and

4 2
x-3) 7 x+1)

B and can write the answer as
Partial Fractions

1B



Yeachings for Exercise
1{®




Sx-4
X% -x-2

2

N A

You can also split fractions
with more than 2 linear factors
in the denominator

x+1D(x-3)(x+4) - x—3 + x+ 4

For example:

when split up into Partial Fractions

1C



Sx-4
X% -x-2

<2

N A

Partial Fractions

jons

Split the Fraction into
its 3 linear parts

Partial F

You can also split fractions x(x=1(2x+ 1)
with more than 2 linear factors
in the denominator +

B L C

. x -1 2xt1 Cross Multiply to make
Spl'T the denominators equal

) B Ax-1)(2x+1) |, B(x)(2x+1) Cx)(x — 1)
6x" +5x 2 *c D@+l  xx-DExsD  ra-D@t D)
x(x—1)(2x+1) Put the fractions
together
into Partial fractions Ax-1D(2x+1) +Bx)(2x +1) + C(x)(x — 1)

x(x — 1)(2x + 1) The numerators

must be equal

6x2+5x—2 = Ax—-1D2x+1D)+Bx)2x+1)+C(x)(x—-1)

Ifx=1 9 = 3B
3 = B
Ifx=0 -2

If x=-05

You can now fill in
the numerators

1C



5x-4
4..2' x% -x-2
N /7
Partial Fractions P T ° l F T ° S
3 2
You can also split fractions X7 —4x"+x+6 Try substituting factors to
with more than 2 linear factors 3 2 make the expression O
. . 1)°—4(1)“+(1)+6 = 4
in the denominator (D7 =4M)~+ (M) )
split —1D*—4(-D*+(-1)+6 =0
4x% — 21x + 11 Therefore (x + 1) is a factor...
x3 —4x>+x+6 Divide the expression by (x + 1)

x2—-5x + 6
x+1| x3—4x*+x+6

You will.need to X3 4+ 12
factorise the

into Partial fractions

denominator first... —5x*+x+6
—5x% — 5x
6x + 6
6x + 6
0

3 _ An2 — 2 _
x ax“t+x+6 (x + 1)(36 X + 6) You can now factorise
the quadratic part

x3—4x*+x+6 = (x+Dx-2)(x-3)

1C



Sx-4
X% -x-2

<2
N A

Partial Fractions

Partial F

ns

4x%2 —21x + 11 4x%2 —21x+ 11
ou can also split fractions _ = _ _
yh U can Clh Zp li fr n X3 —4x? +x+6 Ce+ D= 2)(x = 3) Split the fraction into
with more than 2 linear factors its 3 linear parts
in the denominator A L B L C
Spli'r x+1 xX—2 x—3 Cross
- ) multiply
2 A(x—=2)(x=3) B(x+1)(x—-3) Cx+1)(x—-2)
4x° — 21x + 11 + +
x+Dx-2)(x-3) (x+1DxE-2)(x—-3) E+DHx-2)(x-3)
x3 —4x?2+x+6 Group the
fractions
into Partial fractions
The
numerators
must be
equal

4x? = 21x+11 = Ax-2)(x=3)+Bx+1D)x=-3)+C(x+1)(x-2)
Ifx=2 —-15 —-3B

If x=3 16
-4 = C
Ifx=-1 36 = 12A

3= A
) Replace A,
Band C
_ 3 n 5 _ 4

1C



Yeachings for Exercise
1D




Partial Fractions

You need to be able to split a
fraction that has repeated linear
roots into a Partial Fraction

For example:

3x2 —4x +2 A B C

(x + 1) (x — 5)2 (x+1) * (x =5) *

The repeated root is
included once ‘fully’ and
once 'broken down’

(x = 5)?

X

5
xt3y?

,,.v x +9

*,
S

*becau

*STOP when )
degree of remainder
< degree of divisor]

se you can't divide anymore!

when split up into
Partial Fractions

1D



X

1
H' * + g
' 4 43y?

X

| *STOP when //’I
\ degree of remainder

L °
PC(I'TIC(' Fl'ClCTI ns —
O *because you ;' t c;vide, anymore!

11x%2+ 14x+5

roots into a Partial Fraction A L, _B C
SP“T (x+1) (x+1)° (2x+1) Make ‘r:;u::\lzrllz:‘r:rina'rors
11x% + 14x + 5 Ax+D@Ex+1) ,  B@2x+1)
(x + 1)%2(2x+ 1) (x+1)?(2x+1) (x+12%(2x+1)
Group u
into Partial fractions AGc+1)Qx+ 1)+ B@x + 1) + C(x + 12 o

(x+1)2(2x+1) The numerators

will be the same

1Mx?+14x+5 = Ax+1D)Rx+1)+B2x+1)+C(x +1)?
If x=-1

If x=-05

ATt this point there is no way to
cancel B and C fo leave A by
substituting a value in If x=0

Choose any value for x (that

hasn't been used yet), and use

the values you know for B and C S‘f:c i: *Eea:ghées
to leave A 4 4 2 3 '

G+rD  GFi? . &+ D

1D



Yeachings for Exercise
LK




X

4
,-’/ 437

*STOP when )
degree of remainder”

[ ] Y
P a l T l a l F l a C T l 0 ns N < degree of divisor]
*because you can't divide anymore!

You can split an improper fraction into
Partial Fractions. You will need to divide
the numerator by the denominator first

to find the ‘'whole’ part

A regular fraction being

Q _ 1 n E / split into 2 ‘components’

35 5 7

>7 2| ! + 3 A top heavy (improper) fraction
— = — — i i
20 4 5 T il have a 'whole number part

before the fractions

1E



X

1
x +9
/" 4 2

x7+3x
\ J *STOP Whend S
Partial F tions 7
a r l a rac l O n "’bgca-u_;;;';.l ;'Tc;;;;;anymore!
3x? —3x—2 _ 3x%2—3x—2
You can split an improper fraction into x—-Dx-2) 2 —3x+2
Partial Fractions. You will need to divide l?;’\vicie the 'nuTeriTOF'b&/
H H e aenominator 1o TIn
the numerator by the denominator first 3 the whole’ part

to find the ‘'whole’ part X2 —3x 42 | A2 — 3 — 2

Split 3x2—9x+6
3x2—3x—2 6x — 8 Now rewrite the original
( 1)( 2) fraction with the whole
X — X — 2w 6x — 8 part taken out
3x“—=3x—-2 _ 3 H X
into Partial fractions (x=1D(x=-2) (x-Dx-2) Split the fraction into 2
parts (ighore the whole
A B part for now)

Remember, Algebraically an
'improper’ fraction is one where

_I_
(x-1) (x—2) Make denominators

the degree (power) of the equivalent and group up
humerator is equal to or exceeds JAx=2)+B(x-1)
that of the denominator 1 :-Dx-2)
The numerators will be
6x—8 = A(x-2)+B(x-1) the same
Ifx=2 4 = B

Ifx=1

G-D 1E




Summary

* We have learnt how to split Algebraic
Fractions into 'Partial fractions’

» We have also seen how to do this
when there are more than 2
components, when one is repeated and
when the fraction is 'improper



